Math, asked by ricky72, 11 months ago

. Solve this please help me​

Attachments:

Answers

Answered by Anonymous
2

 \huge \red{ \underline{ question}} \\  \\  \implies \: prove \: that \:  \:  \:  \:  \frac{1 - cos \theta}{1 + cos \theta}  =  {(cosec \theta  - cot \theta)}^{2}  \\  \\  \\  \green{ \underline{proof}} \implies  \\  \\  \underline{step \: by \: step \: explanation} \\  \\  \green{firstly \: taking \: left \: hand \: side} \\  \\  \implies \:  \frac{1 - cos \theta}{1 + cos \theta}  \\  \\  rationalising \: by \: (1 - cos \theta) \:  \\ \blue{ it \: become }\\  \\  \implies \:  \bigg( \frac{1 - cos \theta}{1 + cos \theta}  \bigg) \times  \bigg( \frac{1 - cos \theta}{1 - cos \theta}  \bigg) \\  \\ using \: identities \\ \red{  \star }  \implies\:  {a}^{2}  -  {b}^{2}  = (a - b)(a + b) \\  \red{ \star} \implies  1 -  {cos}^{2} \theta =  {sin}^{2} \theta \\ \red{\star}\implies 1/sin\theta=cosec\theta  \\ \red{\star} \implies cos\theta/sin\theta=cot\theta \\ \\   \implies \:  \frac{ {(1 - cos \theta)}^{2} }{1 -  {cos}^{2} \theta }  \\  \\ \implies \:  \frac{ {(1 - cos \theta}^{2} }{ {sin}^{2} \theta }  \\  \\ \implies \:  { \bigg( \frac{1 - cos \theta}{sin \theta}  \bigg)}^{2}   \\  \\  \implies \:    {  \bigg(\frac{1}{sin \theta} -  \frac{cos \theta}{sin \theta}   \bigg)}^{2}   \\  \\  \implies \:  \:  {(cosec \theta - cot \theta)}^{2}  \\  \\  \\ hence \: proved \:

Similar questions