solve this please
it's little urgent!
Attachments:
Answers
Answered by
6
Answer:
(p⁴/q²) - (4p²/q) + 2
Step-by-step explanation:
Given Equation is x² - px + Q.
Here, a = 1, b = -p, c = q.
Given that α,β are the roots of the equation.
(i)
Sum of roots = -b/a
α + β = -(-p)/1
α + β = p.
(ii)
Product of roots = c/a
αβ = q/1
αβ = q.
LHS:
(α²/β²) + (β²/α²)
= [(α² + β²)² - 2α²β²]/α²β²
= {[(α+β)² - 2αβ]² - 2(αβ)}²}/(αβ)²
= {[(p)² -2(q)]²-2(q)²}/(q)²
= [(p² - 2q)² - 2(q)²]/q²
= [(p⁴ + 4q² - 4p²q - 2q²)]/q²
= [(p⁴ - 4p²q + 2q²)]/q²
= (p⁴/q²) - (4p²q/q²) + (2q²/q²)
= (p⁴/q²) - (4p²/q) + 2.
Hope it helps!
Answered by
5
alpha + beta = p. ........(1)
alpha beta = Q........(2)
Now divide 2 by 1
( alpha + beta)/ alpha beta = P/Q
SQUARING BOTH SIDE
alpha ^2 + beta ^2 + 2 alpha beta )/ alpha^2 beta^2 = (P^2)/Q^2
1/beta^2 + 1/alpha^2+ 2 /alpha beta = = (p/Q)^2
alpha^2 + beta^2)/ alpha^2 beta^2 = ( p/q)^2 - 2 /Q
alpha^2 + beta^2 = ( p/q)^2 -2/Q ) × Q^2
We have to find alpha^4 + beta^4)/ alpha^2 beta^2
= ( alpha^2+ beta^2)^2 - 2alpha^2beta^2)/ apha^2 beta^2
= ( P/q)^2 -2/Q) Q^2 )^2- 2 Q^2 / Q^2
= ( P^2/Q^2- 2/Q)^2 Q^4 - 2Q^2)/ Q^2
= P^2 /Q^2 - 2/Q)^2 Q^2 - 2
= P^4/Q^4 + 4/Q^2 - 4P^2/Q ) Q^2 - 2
= P^4/Q^2 + 4 - 4p^2 Q - 2
= P^4/Q^2 - 4P^2/Q + 2
✌✌✌Dhruv✌✌✌
alpha beta = Q........(2)
Now divide 2 by 1
( alpha + beta)/ alpha beta = P/Q
SQUARING BOTH SIDE
alpha ^2 + beta ^2 + 2 alpha beta )/ alpha^2 beta^2 = (P^2)/Q^2
1/beta^2 + 1/alpha^2+ 2 /alpha beta = = (p/Q)^2
alpha^2 + beta^2)/ alpha^2 beta^2 = ( p/q)^2 - 2 /Q
alpha^2 + beta^2 = ( p/q)^2 -2/Q ) × Q^2
We have to find alpha^4 + beta^4)/ alpha^2 beta^2
= ( alpha^2+ beta^2)^2 - 2alpha^2beta^2)/ apha^2 beta^2
= ( P/q)^2 -2/Q) Q^2 )^2- 2 Q^2 / Q^2
= ( P^2/Q^2- 2/Q)^2 Q^4 - 2Q^2)/ Q^2
= P^2 /Q^2 - 2/Q)^2 Q^2 - 2
= P^4/Q^4 + 4/Q^2 - 4P^2/Q ) Q^2 - 2
= P^4/Q^2 + 4 - 4p^2 Q - 2
= P^4/Q^2 - 4P^2/Q + 2
✌✌✌Dhruv✌✌✌
Similar questions