English, asked by yadavbabita2074, 3 months ago

solve this please prove this​

Attachments:

Answers

Answered by Asterinn
11

Given :-

 \rm \dfrac{Sin \: A}{1 + cos \: A}  + \rm \dfrac{cos\: A}{sin \: A}  =  \dfrac{1}{\rm{Sin \: A} }

To prove :-

LHS = RHS

Proof :-

 \rm \: R.H.S =   \dfrac{1}{\rm{Sin \: A} }

 \rm \: L.H.S = \rm \dfrac{Sin \: A}{1 + cos \: A}  + \rm \dfrac{cos\: A}{sin \: A}

\rm  \longrightarrow\dfrac{Sin \: A}{1 + cos \: A}  + \rm \dfrac{cos\: A}{sin \: A}   \\  \\  \\ \rm  \longrightarrow\dfrac{ {Sin}^{2}  \: A +cos \: A +  {cos}^{2}  \: A }{(1 + cos \: A)sin \: A}  \\  \\  \\ \rm  \longrightarrow\dfrac{ {Sin}^{2}  \: A  +  {cos}^{2}  \: A +cos \: A}{(1 + cos \: A)sin \: A}  \\  \\  \\ \rm  \longrightarrow\dfrac{ 1 +cos \: A}{(1 + cos \: A)sin \: A}  \\ \  \\  \\ \rm  \longrightarrow\dfrac{1}{sin \: A}

Therefore, L.H.S = R.H.S

hence proved

Additional Information :-

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Answered by diajain01
45

{\colorbox{cyan}{✿QuesTion}}

TO PROVE:-

 \bold{ \frac{sin \:A  }{1 + cos \:A}  +  \frac{cos \:A}{sin \:A }  =  \frac{1}{ sin \: A } }

______________________________________________★

{\colorbox{pink}{✿ AnsWer}}

{\boxed{\underline{\red{ L.H.S}}}}

:  \longrightarrow \:  \frac{sin \: A }{1 +  \: cos \: A }  +  \frac{cos \: A }{sin A }

TAKING L.C.M:-

L.C.M is (1+cos A ) sin A

:  \longrightarrow \:  \frac{ {sin}^{2}\:A \:  + cos \:A \:  +  {cos}^{2}A}{(1 + cos \: A)sin \:A  }

:  \longrightarrow \:  \frac{ {sin}^{2} A \:  +  {cos}^{2}A \:  + cos \:  A }{(1 + cos \: A)sin \: A }

AS,

{ \boxed{ \underline{ \purple{Sin^2 A + Cos^2 A + Cos A = 1+ Cos A}}}}

:  \longrightarrow \:  \frac{ \cancel{1 + cos \:A}}{ \:( \cancel{1 + cos \:A }) sin \: A }

:  \longrightarrow \:   \orange{\frac{1}{sin \: A} }

{\boxed{\underline{\red{ R.H.S}}}}

THEREFORE,

LHS = RHS

HENCE PROVED....

______________________________________________★

★MORE TO KNOW:-

⬤   \: sin \: (a + b) =  \: sin \: a \: co</u><u>s</u><u> b \:  +  \: cos \:  \: sin \: b \:

⬤  sin \: (a - b) =  \: sin \: a \: cos \: b - cos \:  a \: sin \: b \:.

⬤  cos(a + b) = cos \: a \: cos \: b \:  - \: sin \: a \: sin \: b \: .

⬤   \: cos \: (a - b) = cos \: a \: cos \: b \:  + sin \: a \: sin \: b.

⬤  tan(a + b) =  \frac{tan \:  a \:  +  \: tan \: b}{1 - tan \: a \: tan \: b \: }

⬤  tan(a  -  b) =  \frac{tan \:  a \:   -   \: tan \: b}{1  +  \: tan \: a \: tan \: b \: }

Similar questions