solve this.. please....
..will mark brainliest
Attachments:
Answers
Answered by
6
xy²k = (4xy + 3y)² - (4xy - 3y)²
.
Apply a² - b² = (a + b ) (a - b) :
xy²k = [(4xy + 3y) - (4xy - 3y) ] [(4xy + 3y) + (4xy - 3y) ]
.
Remove brackets (remember to take care of the negative signs):
xy²k = [ 4xy + 3y - 4xy + 3y ] [ 4xy + 3y + 4xy - 3y ]
.
Combine like terms:
xy²k = [ 6y ] [ 8xy ]
.
Multiply RHS:
xy²k = 48xy²
.
Divide both sides by xy²:
k = 48xy² /xy²
.
Answer:
k = 48
TooFree:
Thank you for the brainliest :)
Answered by
4
xy^2 k = ( 4xy + 3y)^2 - ( 4xy - 3y)^2
Using identity (a^2 - b^2) = (a +b) (a - b), we get
xy^2 k = ( 4xy + 3y - 4xy + 3y)(4xy + 3y + 4xy - 3y)
=> xy^2 k = ( 6y)( 8xy)
=> xy^2 k = 48 xy^2
=> k = 48
Using identity (a^2 - b^2) = (a +b) (a - b), we get
xy^2 k = ( 4xy + 3y - 4xy + 3y)(4xy + 3y + 4xy - 3y)
=> xy^2 k = ( 6y)( 8xy)
=> xy^2 k = 48 xy^2
=> k = 48
Similar questions