Math, asked by nilpitcana, 3 months ago

solve this :-pleswehsk

Attachments:

Answers

Answered by hotcupid16
129

Solution:-

\sf \to \dfrac{(x-3)(x-5)(x^{2}-14x+24)}{(x-7)(x^{2}-8x+15)}

  • Do the middle term splitting in the denominator.

\sf \to \dfrac{(x-3)(x-5)(x^{2}-14x+24)}{(x-7)(x^{2}-3x-5x+15)}

  • Take out the common terms.

\sf \to \dfrac{(x-3)(x-5)(x^{2}-14x+24)}{(x-7)(x(x-3)-5(x-3))}

  • Factor out x - 3 from the expression.

\sf \to \dfrac{(x-3)(x-5)(x^{2}-14x+24)}{(x-7)(x-5)(x-3)}

  • Cancel out the terms.

\sf \to \dfrac{\cancel{(x-3)}\cancel{(x-5)}(x^{2}-14x+24)}{(x-7)\cancel{(x-5)}\cancel{(x-3)}}

\sf \to \dfrac{(x^{2}-14x+24)}{(x-7)}

  • Do the middle term splitting in the numerator.

\sf \to \dfrac{(x^{2}-2x-12x+24)}{(x-7)}

  • Take out the common terms.

\sf \to \dfrac{(x(x-2)-12(x-2))}{(x-7)}

  • Factor out x - 2 from the expression.

\sf \to \dfrac{(x-2)(x-12)}{(x-7)}

Similar questions