Math, asked by Anonymous, 3 months ago

solve this plszzzdnd fast ​

Attachments:

Answers

Answered by hotcupid16
12

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Initial\: velocity\:(u) = 0 \:m/s }

\:\:\:\:\bullet\:\:\:\sf{Final \ velocity \: (v) = 2.8 \ m/s }

\:\:\:\:\bullet\:\:\:\sf{Acceleration \: (a) = 1.5 \ m/s^{2}}

\\

{\mathfrak{\underline{\orange{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Time \ taken \ (t) = \:? }

\\

{\mathfrak{\underline{\red{\:\:\: Solution:-\:\:\:}}}} \\ \\

⬤ Using 1st equation of motion :-

\\

\dashrightarrow\:\: \sf{ v = u + at}

\\

\dashrightarrow\:\: \sf{ 2.8 = 0 + 1.5t}

\\

\dashrightarrow\:\: \sf{ 2.8 = 1.5t}

\\

\dashrightarrow\:\: \sf{ t = \dfrac{2.8}{1.5}}

\\

\dashrightarrow\:\: \sf{t = 1.8\overline{6}}

\\

\dashrightarrow\:\: \sf{ t = 2 \:(approximately)}

\\

Hence,

Time taken to reach velocity of 2.8 m/s is \bf{2\: seconds}

\\

{\mathfrak{\underline{\pink{\:\:\:Additional \:Information:-\:\:\:}}}} \\ \\

\star\:\sf{Some\:equation\: of \:motion }

\boxed{</p><p></p><p>\begin{minipage}{3 cm}$\\</p><p></p><p>\sf{\:\bullet\:\:v = u +at} \\ \\</p><p></p><p>\sf{\:\bullet\:\:s = ut + \frac{1}{2}\:at^{2} }\\ \\</p><p></p><p>\sf{\:\bullet\:\:v^{2} = u^{2} + 2as}\\ \\</p><p>\sf{\:\bullet\:\:s = \dfrac{1}{2} (u + v)t}\\$</p><p></p><p>\end{minipage}</p><p></p><p>}

\\

\sf{Where,}

\:\:\:\:\bullet\:\:\:\textsf{v = Final velocity}

\:\:\:\:\bullet\:\:\:\textsf{u = Initial velocity}

\:\:\:\:\bullet\:\:\:\textsf{a = Acceleration}

\:\:\:\:\bullet\:\:\:\textsf{s = Distance}

\:\:\:\:\bullet\:\:\:\textsf{t = Time taken}

Answered by Anonymous
1

Answer:

Given :

Area of rhombus = 120 cm²

Length of diagonal = 8 cm

To find :

Length of another diagonal

According to the question,

\sf{ :  \implies Area \: of \: rhombus =  \dfrac{1}{2}  \times d _{1} \times d_{2}   }

 \\

 \sf  : \implies{ {120 \: cm}^{2} =  \dfrac{1}{2}   \times 8 \: cm \times x}

 \\

 \sf :  \implies{ {120 \: cm}^{2} \times 2 = 8 \: cm \times x }

 \\

 \sf :  \implies{ {240 \: cm}^{2}  = 8 \: cm \times x}

 \\

 \sf  : \implies{ \dfrac{240}{8}  \: cm = x}

 \\

 { \underline{ \boxed{  \sf  \pink{ :  \implies{   \bm3 \bm0 \: c m =x}}}}}

{ \therefore{ \underline{\sf{So \:,the \:  length \:  of \:  other \:  diagonal  \: is \:    3 0 \: cm}}}}

Similar questions