Math, asked by Anonymous, 9 months ago

Solve this Plz ..?!?!?!?!?!​

Attachments:

Answers

Answered by Anonymous
17

☆ANSWER:-

━☞GIVEN:-

PM \perp QR

and \: SN \perp  QR

PM  = 3 \: and \: SN = 4.5

━☞FIND:-

 \frac{A(PQR)}{A(SQR)}

━☞SOLUTION:-

in  \: \triangle  \: PQR, PM \: and \:  QR

So, \: a \: of \:  \triangle(PQR) =  \frac{1}{2}  \times QR \times  PM   \:  \:    -  - (i)

IN \triangle SQR ,   SN \perp   QR

So, \: a \: of \:  \triangle(SQR) =  \frac{1}{2}  \times SN \times  QR \:  \:    -  - (i)

 =  >  \frac{ a(PQR  )}{a(SQR)}  =  \frac{ \frac{1}{2}  \times QR   \times PM }{ \frac{1}{2}  \times  SN \times   QR }  \:  \:  \binom{from \: eq. \: (i) \: and \: (ii)}{}

 =  \frac{PM}{ SN}

 =  \frac{3}{4.5 }  \:  \: ( \therefore \: PM = 3 \: and \:    SN = 4.5)

 =  \frac{ \cancel {30}}{ \cancel{ 4.2}}  =  \frac{2}{3}

 \therefore a  \triangle( PQR ) \ratio a  \triangle ( SQR) = 2 \ratio3

Answered by pratibha883
0

Answer:

hlooo inbox me plzzz ......

Similar questions