Math, asked by himanshiahuja80, 8 months ago

solve this plz as fast as possible​

Attachments:

Answers

Answered by Anonymous
31

┏─━─━─━─━∞◆∞━─━─━─━─┓ ✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✮✭

┗─━─━─━─━∞◆∞━─━─━─━─┛

 \bf {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23,  \:  \: x +  \frac{1}{x}  = ?

 \bf\mathfrak{\color{orange}{\underline {\underline{using \: idetity}}}}

\large{\color{red}{(a+ b) {}^{2}  =  {a}^{2}   +  {b}^{2} + 2ab }}

 \bf {(x +  \frac{1}{x}) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}

 \bf {(x +  \frac{1}{x}) }^{2}  =  23 +2 \times x  \times \frac{1}{x}

 \bf{(x +  \frac{1}{x}) }^{2}  =23 + 2

 \bf{(x +  \frac{1}{x}) }^{2}  =25

 \bf{(x +  \frac{1}{x}) }^{2}  = {5}^{2}

 \bf{(x +  \frac{1}{x}) }  =5

Additionally

More Identities

  •  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

  •  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy

  •   {x}^{2}  -  {y}^{2}  = (x + y)(x - y)
Answered by Shikta12
1

5

As x^2 + 1/x^2 is given 23 ,we need to find x + 1/x

( x + 1/x)^2 = x^2 + 1/x^2 + 2× x × 1/x

= x^2 + 1/x^2 + 2

x^2 + 1/x^2 = 23 so

x^2 + 1/x^2 + 2 = 23 + 2

= 25

( x + 1/x)^2 = 25

x + 1/x = √25

= 5

Similar questions