Math, asked by captverma, 4 months ago

solve this plz..
no spam..
otherwise 10 answers will be reported..​

Attachments:

Answers

Answered by BRAINLYxKIKI
4

Required Answer :

ㅤㅤㅤ

Question 1

ㅤㅤㅤ

Show that :

ㅤㅤㅤ

ㅤㅤㅤ \boxed{\sf{\red{ \dfrac{x^{a+b} \times x^{b+c} \times x^{c+a} }{ ( x^{a} \times x^{b} \times x^{c} ) } \:=\: 1 }}}

ㅤㅤㅤ

Applicable concept :

ㅤㅤㅤ

( Law of exponents & power )

ㅤㅤㅤ

Final Answer :

ㅤㅤㅤ

\sf{ \implies \dfrac{ x^{a+b} \times x^{b+c} \times x^{a+c} }{ ( x^{a} \times x^{b} \times x^{c} )² }}

ㅤㅤㅤ

\sf{ \implies \dfrac{ x^{(a+b)+(b+c)} \times x^{a+c} }{ x^{2a} \times x^{2b} \times x^{2c} }}

ㅤㅤㅤ

\sf{ \implies \dfrac{x^{(a + 2b + c)+(a + c)} }{ x^{(2a + 2b + 2c)} } }

ㅤㅤ

\sf{ \implies \dfrac{\cancel{ x^{(2a + 2b + 2c)}}^{\:\:\:\:1}}{ \cancel{ x^{(2a + 2b + 2c)}}}}

ㅤㅤㅤ

\sf{\implies \boxed{\sf{\green{1} \:=\: \green{R.H.S.}} }}

ㅤㅤㅤ

_____________________

Question 2

ㅤㅤㅤ

Solve the following equation :

ㅤㅤㅤ

ㅤㅤㅤ\boxed{\sf{\red{ \dfrac{ 5( 1 + x ) \:+\: 3( 1 + x ) }{ 1 - 2x } \:=\: 8 }}}

ㅤㅤㅤ

Applicable concept :

ㅤㅤㅤ

( Simplification )

ㅤㅤㅤ

 \implies \sf{ \dfrac{ 5( 1 + x ) \:+\: 3( 1 + x ) }{ 1 - 2x } \:=\: 8 }

ㅤㅤㅤ

 \implies \sf{ \dfrac{ ( 5 - 5x ) + ( 3 + 3x ) }{ 1 - 2x } \:=\: 8 }

ㅤㅤㅤ

\implies \sf{ \dfrac{ 5 + 3 - 5x + 3x }{ 1 - 2x } \:=\: 8 }

ㅤㅤㅤ

\implies \sf{ \dfrac{ 8 - 2x }{ 1 - 2x } \:=\: 8 }

ㅤㅤㅤ

\implies \sf{ 8 - 2x \:=\: 8 ( 1 - 2x ) }

ㅤㅤㅤ

\implies \sf{ 8 - 2x \:=\: 8 - 16x }

ㅤㅤㅤ

\implies \sf{ 8 - 16x \:=\: 8 - 2x }

ㅤㅤㅤ

\implies \sf{ -16x + 2x \:=\: 8 - 8 }

ㅤㅤㅤ

\implies \sf{ -14x \:=\: 0 }

ㅤㅤㅤ

 \implies \sf{ x \:=\: \xcancel{\dfrac{0}{-16}} }

ㅤㅤㅤ

\implies \boxed{\sf{\green{ x \:=\: 0 }}}

ㅤㅤㅤ

ㅤㅤㅤ ʙʀɪɴʟʏ×ɪɪ

Similar questions