Math, asked by tanishagarg704, 9 months ago

Solve this plzz y=p tan p +log (cos p) where p =dy /dx

Answers

Answered by VaishnaviMohan
0

Answer:

log tan y/4 = c – 2 cos x/2 (D) none of these ... Solution of dy/dx = y/x + tan y /x is: ... Solution of 2y sinx dy/dx = 2sinx cosx –y2cosx, x=p/2, y=1 is given by.

Step-by-step explanation:

May this ANSWER will help you plz mark has brainliest

Answered by sonuvuce
0

In parametric form, the solution is

y=p\tan p+\log (\cos p) and x=\tan p-c

In non-parametric form, the solution is

y=(x+c)\tan^{-1}(x+c)+\log (\cos (\tan^{-1}(x+c)))

Step-by-step explanation:

Given

y=p\tan p+\log (\cos p)

Differentiating the above w.r.t. x

\frac{dy}{dx}=p\sec^p\frac{dp}{dx}+\tan p\frac{dp}{dx}+\frac{1}{\cos p}\times(-\sin p)\frac{dp}{dx}

\implies p=p\sec^2p\frac{dp}{dx}+\tan p\frac{dp}{dx}-\tan p\frac{dp}{dx}

\implies p=p\sec^2p\frac{dp}{dx}

\implies \sec^2p dp=dx

\implies\int \sec^2p dp=\int dx

\implies \tan p=x+c    where c is a  constant

\implies x=\tan p-c

Thus,

y=p\tan p+\log (\cos p) and x=\tan p-c is parametric solution of the equation, where p is a parameter

If we eliminate p

\tan p=x+c

\implies p=\tan^{-1}(x+c)

Thus,

y=\tan^{-1}(x+c)\tan (\tan^{-1}(x+c))+\log (\cos (\tan^{-1}(x+c)))

\implies y=(x+c)\tan^{-1}(x+c)+\log (\cos (\tan^{-1}(x+c)))

Hope this answer is helpful.

Know More:

Q: Solve differential equation y=sin p-p cos p?

Click Here: https://brainly.in/question/8913440

Similar questions