Math, asked by Strikingsagar, 1 year ago

solve this plzzzz..........​

Attachments:

bhanuteja59: Hlo

Answers

Answered by Anonymous
21

\boxed{\begin{minipage}{7 cm}Fundamental Trigonometric Identities \\ \\$\sin^2\theta + \cos^2\theta=1 \\ \\1+\tan^2\theta = \sec^2\theta \\ \\1+\cot^2\theta = \text{cosec}^2 \, \theta$\end{minipage}}

 \mathfrak{Question:-}

show that sinA.cosB - cosA.sinB = sin(a-b), where a = 60 and b = 30

 \mathfrak{Answer:-}

 \mathsf{Given:-}

A = 60

B = 30

So,

\bold{SinA.CosB - CosA.SinB = Sin(A-B)}

\bold{Sin\;60 \times Cos\; 30 - Cos\; 60 \times Sin\; 30 = Sin (A-B)}

\bold{=\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{2} = Sin(60 - 30)}

\bold{=(\frac{\sqrt{3} }{2})^{2} - (\frac{1}{2})^{2} = Sin\;30}

\bold{=\frac{3}{4} - \frac{1}{4} = \frac{1}{2}}

\bold{\frac{1}{2}=\frac{1}{2}}

\bold{LHS = RHS}

Hence it is verified.


rahulgrover033: hlo
Similar questions