Math, asked by Harshadabankar, 2 months ago

solve this polynomials equation​

Attachments:

Answers

Answered by Anonymous
18

length \: of \: the \: rectangular \\  \: farm \: = (2 {a}^{2}  + 3 {b}^{2} )

breadth \:  \: of \: the \: rectangular \\  \: farm \: = (2 {a}^{2}  + 3 {b}^{2} )

and

side \: of \: the \: square \: plot \:  = ( {a}^{2}  -  {b}^{2} )

Therefore,

remaining \: area \: of \: fied  =  \\ area \: of \: rectangular \\  - area \: of \: squre

remaining \: area =  \\  = (2 {a}^{2}  + 3 {b}^{2} )(2 {a}^{2}  + 3 {b}^{2} ) - ( {a}^{2}  -  {b}^{2} ) \\  =  {(2 {a}^{2}  + 3 {b}^{2}) }^{2}  -  {a}^{2}  +  {b}^{2}  \\  = 4 {a}^{4}  + 9 {b}^{4}  + 12 {a}^{2}  {b}^{2}  -  {a}^{2}  +  {b}^{2}

hope it will help ✨

Answered by muskansingh3707126
0

Step-by-step explanation:

length \: of \: the \: rectangular \\  \: farm \: = (2 {a}^{2}  + 3 {b}^{2} )

breadth \:  \: of \: the \: rectangular \\  \: farm \: = (2 {a}^{2}  + 3 {b}^{2} )

and

side \: of \: the \: square \: plot \:  = ( {a}^{2}  -  {b}^{2} )

Therefore,

remaining \: area \: of \: fied  =  \\ area \: of \: rectangular \\  - area \: of \: squre

remaining \: area =  \\  = (2 {a}^{2}  + 3 {b}^{2} )(2 {a}^{2}  + 3 {b}^{2} ) - ( {a}^{2}  -  {b}^{2} ) \\  =  {(2 {a}^{2}  + 3 {b}^{2}) }^{2}  -  {a}^{2}  +  {b}^{2}  \\  = 4 {a}^{4}  + 9 {b}^{4}  + 12 {a}^{2}  {b}^{2}  -  {a}^{2}  +  {b}^{2}

hope it will help

Similar questions