Math, asked by kaushik05, 1 year ago

solve this problem...​

Attachments:

Answers

Answered by duragpalsingh
12

Hey there!

Given:

\displaystyle \lim_{x \to 0} \dfrac{\tan(\pi\sin^2x)+(|x|-\sin(x[x]))^2}{x^2}

Some properties Required for this Question:

\star \displaystyle \lim_{x \to 0} \dfrac{\sin x}{x} = 1 \ or \ \displaystyle \lim_{x \to 0} \dfrac{\tan x}{x} = 1

Evaluating the Limit:

\displaystyle \lim_{x \to 0} \dfrac{\tan(\pi\sin^2x)+(|x|-\sin(x[x]))^2}{x^2}

Multiplying and dividing by  \pi(\sin^2x),

\displaystyle \lim_{x \to 0} \dfrac{\tan(\pi\sin^2x)}{x^2} \times \dfrac{\pi\sin^2x}{\pi \sin^2x} + \displaystyle \lim_{x \to 0} \dfrac{(|x|-\sin(x[x]))^2}{x^2}

Using Properties given above and applying (a-b)²:

\pi +  \displaystyle \lim_{x \to 0} \dfrac{x^2 + \sin^2(x[x]) - 2|x|\sin(x[x])}{x^2}

\displaystyle \pi +  \lim_{x \to 0} \dfrac{x^2}{x^2} + \dfrac{sin^2(x[x])}{x^2} - \dfrac{2|x|\sin (x[x])}{x^2}  

Now, RHL:

When, \ x \to 0^+ \ then, |x| = x \ and \ [x] = 0

Substituing in limit:

\displaystyle \pi +  \lim_{x \to 0} \dfrac{x^2}{x^2} + \dfrac{sin^2(x[x])}{x^2} - \dfrac{2|x|\sin (x[x])}{x^2}  

= \pi + 1 + 0 - 0\\\\=\pi + 1

Now, LHL:

When, \ x \to 0^-\ then, |x| =- x \ and \ [x] = -1

Substituting in limit:

\displaystyle \pi +  \lim_{x \to 0} \dfrac{x^2}{x^2} + \dfrac{sin^2(x[x])}{x^2} - \dfrac{2|x|\sin (x[x])}{x^2}  

= \pi + 1 + \displaystyle  \lim_{x \to 0} \dfrac{x^2}{x^2} + \dfrac{sin^2(-x)}{x^2} - \dfrac{2(-x)\sin (-x)}{x^2}

= \pi + 1 + \displaystyle  \lim_{x \to 0}  \dfrac{sin^2x}{x^2} - \dfrac{2\sin x}{x}

= \pi + 1 +1 - 2

= \pi

\because RHL\neq LHL

Hence, Limit does not exist.

Answered by Anonymous
3

Step-by-step explanation:

Now, RHL:

</p><p>When, \ x \to 0^+ \ then, |x| = x \ and \ [x] \:

Substituting in limit:

</p><p>\displaystyle \pi + \lim_{x \to 0} \dfrac{x^2}{x^2} + \dfrac{sin^2(x[x])}{x^2} - \dfrac{2|x|\sin (x[x])}{x^2} \:

\begin{lgathered}= \pi + 1 + 0 - 0\\\\=\pi + 1\end{lgathered}  \:

Now, LHL:

then,∣x∣=−x and [x]=−1

Substituting in limit:

\displaystyle \pi + \lim_{x \to 0} \dfrac{x^2}{x^2} + \dfrac{sin^2(x[x])}{x^2} - \dfrac{2|x|\sin (x[x])}{x^2}</p><p>

= \pi + 1 + \displaystyle \lim_{x \to 0} \dfrac{x^2}{x^2} + \dfrac{sin^2(-x)}{x^2} - \dfrac{2(-x)\sin (-x)}{x^2}.

= \pi + 1 + \displaystyle \lim_{x \to 0} \dfrac{sin^2x}{x^2} - \dfrac{2\sin x}{x}</p><p>.

\pi + 1 +1 - 2=.

\pi.

\because RHL\neq LHl.

Hence, Limit does not exist.

Similar questions