Math, asked by harashsharma126, 10 months ago

solve this problem ​

Attachments:

Answers

Answered by bediharsiddak
1

\sec^2\theta - \tan^2 \theta = 1

\therefore \tan\theta = \sqrt{\sec^2 \theta - 1}

\displaystyle \therefore \tan\theta = \sqrt{\left(x + \frac{1}{4x}\right)^2 - 1}

\displaystyle = \sqrt{x^2 + \frac{1}{16x^2} + \frac{1}{2} - 1}

\displaystyle = \sqrt{x^2 + \frac{1}{16x^2} - \frac{1}{2}}

\displaystyle = \sqrt{\left(x - \frac{1}{4x}\right)^2}

\displaystyle = \pm \left(x- \frac{1}{4x}\right)

Hence,

\displaystyle \sec\theta + \tan\theta = 2x \text{ or } \frac{1}{2x}

Similar questions