Math, asked by aftabalam1974, 11 months ago

solve this problem ​

Attachments:

Answers

Answered by BrainlyQueen01
16

Answer:

\boxed{\red{\bf x = 1}}

\boxed{\red{\bf y= 1}}

Step-by-step explanation:

Given that -

 \sf  \dfrac{1}{3x + y}  +  \dfrac{1}{3x - y}  =  \dfrac{3}{4} \:  \:  \:  \: ....(i) \\  \\ \sf  \dfrac{1}{2(3x + y)} -  \dfrac{1}{2(3x - y)}  =   - \dfrac{1}{8} \:  \:  \: ....(ii)

Let , \sf \dfrac{1}{3x+y}=u and \sf \dfrac{1}{3x - y}=v.

Substituting the above assumptions in the equation -

Equation (i) :

\sf \dfrac{1}{3x+y}+\dfrac{1}{3x-y}=\dfrac{3}{4}

⇒ u + v = \dfrac{3}{4}

⇒ 4(u + v) = 3

⇒ 4u + 4v = 3

Equation (ii) :

\sf \dfrac{1}{2(3x+y)}-\dfrac{1}{2(3x-y)}=\dfrac{-1}{8}

\sf \dfrac{u}{2}-\dfrac{v}{2}=\dfrac{-1}{8}

\sf \dfrac{u-v}{2}=\dfrac{-1}{8}

⇒ u - v = \dfrac{-1}{4}

⇒ 4(u - v) = - 1

⇒ 4u - 4v = - 1

On adding both the equation -

⇒ 4u + 4v + 4u - 4v = 3 + ( - 1)

⇒ 8u = 2

⇒ u = \dfrac{2}{8}

⇒ u = \dfrac{1}{4}

On substituting the value of u in eqⁿ (i) -

⇒ 4u + 4v = 3

⇒ 4 * \dfrac{1}{4} + 4v = 3

⇒ 1 + 4v = 3

⇒ 4v = 3 - 1

⇒ v = \dfrac{2}{4}

⇒ v = \dfrac{1}{2}

On substituting the value of u and v in our assumptions :

\implies \sf \dfrac{1}{3x+y}=u

\implies \sf \dfrac{1}{3x+y}=\dfrac{1}{4}

\implies \sf 3x + y = 4 \: \: \:..... (iii)

Also,

\implies \sf \dfrac{1}{3x-y}=v

\implies \sf \dfrac{1}{3x-y}=\dfrac{1}{2}

\implies \sf 3x-y = 2 \: \: \:..... (iv)

Again, on adding (iii) and (iv) :

⇒ 3x + y + 3x - y = 4 + 2

⇒ 6x = 6

x = 1

Substituting the value of x in (iv) :

⇒ 3x - y = 2

⇒ 3 * 1 - y = 2

⇒ y = 3 - 2

y = 1

Hence, the value of x is 1 and y is 1.

Answered by georgethomaskambol
1

Step-by-step explanation:

this is the answer hope it helps

Attachments:
Similar questions