solve this problem
Attachments:
Answers
Answered by
16
Answer:
Step-by-step explanation:
Given that -
Let , and .
Substituting the above assumptions in the equation -
Equation (i) :
⇒
⇒ u + v =
⇒ 4(u + v) = 3
⇒ 4u + 4v = 3
Equation (ii) :
⇒
⇒
⇒
⇒ u - v =
⇒ 4(u - v) = - 1
⇒ 4u - 4v = - 1
On adding both the equation -
⇒ 4u + 4v + 4u - 4v = 3 + ( - 1)
⇒ 8u = 2
⇒ u =
⇒ u =
On substituting the value of u in eqⁿ (i) -
⇒ 4u + 4v = 3
⇒ 4 * + 4v = 3
⇒ 1 + 4v = 3
⇒ 4v = 3 - 1
⇒ v =
⇒ v =
On substituting the value of u and v in our assumptions :
Also,
Again, on adding (iii) and (iv) :
⇒ 3x + y + 3x - y = 4 + 2
⇒ 6x = 6
⇒ x = 1
Substituting the value of x in (iv) :
⇒ 3x - y = 2
⇒ 3 * 1 - y = 2
⇒ y = 3 - 2
⇒ y = 1
Hence, the value of x is 1 and y is 1.
Answered by
1
Step-by-step explanation:
this is the answer hope it helps
Attachments:
Similar questions
History,
5 months ago
Science,
5 months ago
Science,
11 months ago
Social Sciences,
11 months ago
Physics,
1 year ago