Math, asked by opps60, 6 months ago

solve this problem ???? ​

Attachments:

Answers

Answered by BrainlyEmpire
94

\huge{\underline{\pink{\tt{Given,}}}}

A Electric Iron Draws 2.2 Amperes of Current.

From 220 Volt (Potential Difference).

\huge{\underline{\pink{\tt{To \ Find,}}}}

Resistance = ?

Power = ?

\huge{\underline{\pink{\tt{Formula\:Used:}}}}

\bigstar \boxed{\sf{Potential\:Difference = Current \times Resistance}}

\bigstar \boxed{\sf{Power = (Current)^{2} \times Resistance}}

\huge{\underline{\pink{\tt{Solution :}}}}

\bigstarFirstly We know About Ohm's Law :

\longmapsto This Law Define that Electric Current is Proportional to Potential Difference and Inversely Proportional to Resistance. That's simple means When Voltage Increase then Current will be Increase and When Resistance Increase then Current will be Decrease .

\mapsto \boxed{\sf{Current = \dfrac{Potential\:Difference}{Resistance}}}

\mapsto \boxed{\sf{Resistance = \dfrac{Potential\:Difference}{Current}}}

Now Solve this Question with the Help of this Law :

\underline{\red{\mathfrak{First\:Case:}}}

\longrightarrow \boxed{\sf{V = IR}}

\longrightarrow \sf{220 = 2.2 \times R}

\longrightarrow \sf{R = \dfrac{220}{2.2}}

\longrightarrow \sf{R = \dfrac{2200}{22}}

\longrightarrow \boxed{\sf{R = 100\:ohms}}(Answer)

Therefore, We have Now Resistance so We Use Second Formula to Find Power :

\underline{\red{\mathfrak{Second\:Case:}}}

\longrightarrow \boxed{\sf{P = I^{2}R}}

\longrightarrow \sf{P = (2.2)^{2} \times 100}

\longrightarrow \sf{P = 4.84 \times 100}

\longrightarrow \boxed{\sf{P = 484\:Watts}} (Answer)

Therefore,

\bigstar \boxed{\red{\mathfrak{Resistance = 100\:ohms \:And \: Power = 484\:Watts}}}

\rule{200}2

Answered by Anonymous
24

\huge{\underline{\pink{\tt{Given,}}}}

A Electric Iron Draws 2.2 Amperes of Current.

From 220 Volt (Potential Difference).

\huge{\underline{\pink{\tt{To \ Find,}}}}

Resistance = ?

Power = ?

\huge{\underline{\pink{\tt{Formula\:Used:}}}}

\bigstar \boxed{\sf{Potential\:Difference = Current \times Resistance}}

\bigstar \boxed{\sf{Power = (Current)^{2} \times Resistance}}

\huge{\underline{\pink{\tt{Solution :}}}}

\bigstarFirstly We know About Ohm's Law :

\longmapsto This Law Define that Electric Current is Proportional to Potential Difference and Inversely Proportional to Resistance. That's simple means When Voltage Increase then Current will be Increase and When Resistance Increase then Current will be Decrease .

\mapsto \boxed{\sf{Current = \dfrac{Potential\:Difference}{Resistance}}}

\mapsto \boxed{\sf{Resistance = \dfrac{Potential\:Difference}{Current}}}

Now Solve this Question with the Help of this Law :

\underline{\red{\mathfrak{First\:Case:}}}

\longrightarrow \boxed{\sf{V = IR}}

\longrightarrow \sf{220 = 2.2 \times R}

\longrightarrow \sf{R = \dfrac{220}{2.2}}

\longrightarrow \sf{R = \dfrac{2200}{22}}

\longrightarrow \boxed{\sf{R = 100\:ohms}}(Answer)

Therefore, We have Now Resistance so We Use Second Formula to Find Power :

\underline{\red{\mathfrak{Second\:Case:}}}

\longrightarrow \boxed{\sf{P = I^{2}R}}

\longrightarrow \sf{P = (2.2)^{2} \times 100}

\longrightarrow \sf{P = 4.84 \times 100}

\longrightarrow \boxed{\sf{P = 484\:Watts}} (Answer)

Therefore,

\bigstar \boxed{\red{\mathfrak{Resistance = 100\:ohms \:And \: Power = 484\:Watts}}}

\rule{200}2

Similar questions