Math, asked by swag2560, 1 year ago

solve this problem ​

Attachments:

sivaprasath: what is the loer limit ?
sivaprasath: lower limit **
swag2560: under 143 their is a sigma
sivaprasath: under sigma, there should be some number
sivaprasath: I assume it to be 1,.

Answers

Answered by sivaprasath
0

Answer:

11

Step-by-step explanation:

Given :

To find the value of a & b if,

143

 ∑ \frac{1}{\sqrt{k} +\sqrt{k+1} } = a - \sqrt{b}

k = 1

Solution :

By taking conjugate ,

\frac{1}{\sqrt{k} +\sqrt{k+1} }

\frac{1}{\sqrt{k} +\sqrt{k+1} }

\frac{1}{\sqrt{k} +\sqrt{k+1} } \times \frac{\sqrt{k} -\sqrt{k+1}}{\sqrt{k} -\sqrt{k+1} }

\frac{\sqrt{k} -\sqrt{k+1}}{(\sqrt{k})^2 -(\sqrt{k+1})^2}

\frac{\sqrt{k} -\sqrt{k+1}}{k - (k + 1)} = \frac{\sqrt{k} -\sqrt{k+1}}{-1} = \sqrt{k+1} - \sqrt{k}

__

143

 ∑ \frac{1}{\sqrt{k} +\sqrt{k+1} }

k = 1

=

143

 ∑ \sqrt{k+1} - \sqrt{k}

k = 1

⇒ ((\sqrt{1+1} - \sqrt{1}) + (\sqrt{2+1} -\sqrt{2} ) + (\sqrt{3+1} -\sqrt{3}) + ...+ (\sqrt{142 +1} - \sqrt{142}  ) + (\sqrt{143 + 1} - \sqrt{143})

(\sqrt{2} - \sqrt{1}) + (\sqrt{3} -\sqrt{2} ) + (\sqrt{4} -\sqrt{3}) + ...+ (\sqrt{143} - \sqrt{142}  ) + (\sqrt{144} - \sqrt{143})

-\sqrt{1} + \sqrt{144} = -1 + 12 = 11

Similar questions