Math, asked by ps968296, 9 months ago

Solve This Problem ⛛ Also....... ​

Attachments:

Answers

Answered by Brâiñlynêha
19

Given :-

A quadratic equation

\sf\bullet px^2+qx+r=0

Their roots in ratio 3:4

To find

The condition on the coefficient of equation !

As we know that

\bigstar{\boxed{\sf{ sum \ of \ zeroes (\alpha+\beta)= \dfrac{-coefficient \ of x}{coefficient \ of \ x^2}}}}

\bigstar{\boxed{\sf{ product \ of \ zeroes ( \alpha \beta)=\dfrac{constant \ term }{coefficient \ of x^2}}}}

So , Now

\sf \bullet px^2+qx+r=0 \\ \\ \sf \   p = coefficient \ of \ x^2 \\ \\ \sf q = coefficient \ of \ x \\ \\ \sf r= constant \ term

  • Zeroes (Roots ) = 3:4
  • let the root be y
  • then 3y and 4y

 \sf sum \ of \ zeroes (\alpha +\beta)=\dfrac{-q}{p}\\ \\ \dashrightarrow\sf (3y+4y)=\dfrac{-q}{p}\\ \\ \dashrightarrow\sf 7y=\dfrac{-q}{p}\\ \\ \dashrightarrow\sf y=\dfrac{-q}{7p}  ------(i)

\sf   Product \ of \ zeroes (\alpha \beta)=\dfrac{r}{p}\\ \\ \dashrightarrow\sf (3y\times 4y)=\dfrac{r}{p}\\ \\ \dashrightarrow\sf 12y^2=\dfrac{r}{p}\\ \\ \dashrightarrow\sf y^2=\dfrac{r}{12p}\\ \\ \dashrightarrow\sf y=\sqrt{\dfrac{r}{12p}}-----(ii)

From equation (i) and (ii)

\dashrightarrow\sf \dfrac{-q}{7p}=\sqrt{\dfrac{r}{12p}}\\ \\ \sf \ \ squaring \ both \ side  \\ \\ \dashrightarrow\sf \bigg[\dfrac{-q}{7p}\bigg]^2= \bigg[\sqrt{\dfrac{r}{12p}}\bigg]^2 \\ \\ \dashrightarrow\sf \dfrac{q^2}{49p^2}=\dfrac{r}{12p} \\ \\ \sf  \ Cross \ multiplication \\ \\\dashrightarrow\sf 12p\times q^2= r\times 49p^2\\ \\ \dashrightarrow\sf 12\cancel{p}q^2= 49\cancel{p^2}r\\ \\ \sf \ \ \ (p ) \ will \ be \ cancel \\ \\ \dashrightarrow\sf 12q^2= 49pr

\boxed{\sf{\dag \ \  12q^2=49pr}}

\bigstar{\boxed{\sf{ Option \ A \ is \ correct \ option }}}


EliteSoul: Nice!
Brâiñlynêha: Thanks
Answered by ItzArchimedes
29

GIVEN:-

  • Quadratic equation : px² + qx + r = 0
  • Ratio of roots should be = 3 : 4

TO FIND:-

The condition on the coefficients of the given equation

We know that

Sum of roots(α + β)=Coefficient of x/coefficient of x²

Product of roots (αβ) = Constant/coefficient of x²

Now, here

  • Coefficient of = p
  • Coefficient of x = q
  • Constant = r

Let the roots of the given quadratic equation be x

Then the roots will be = 3x , 4x

Now,

Sum of roots (α + β) = 3x + 4x

- q/p = 7x

x = - q/7p

Product of roots (αβ) = 3x × 4x

r/p = 12x²

r/12p =

r/12p = x

Hence, x = -q/7p , x = r/12p

Then , - q/7p & √r/12p Both are equal

 \small{ \tt{ \to \green{  \dfrac{ - q}{7p} } \pink{ = } \red{  \sqrt{ \dfrac{r}{12p} }}}} \\  \\  \small{ \to \tt{ \green{ {\Big( \frac{ - q}{7p} \Big)}^{2} \pink{ = }  \red{ \frac{r}{12p} }}}} \\  \\   \small \to \tt{ \green{ \frac{ {q}^{2} }{49 {p}^{2} }  \pink{ = } \red{ \frac{r}{12p} } }} \\  \\   \sf{Cross \: multiply} \\ \\   \to \tt{ \green{12 {q}^{2}  \cancel{p}\pink =  \red{49 {p}^{ \cancel2}r } }}

Hence, \large\fbox{ \mathsf{ \orange{12 {q}^{2} =  49pr}}}

Hence, option (a) is your answer

Similar questions