Math, asked by mohanpegujrt, 1 day ago

Solve this problem by BODMAS rule

Attachments:

Answers

Answered by ivanthikasathya2010
1

 \frac{3}{4}  \times  \frac{4}{9}

simplfy 3 and 9 you will get

 \frac{1}{4}  \times  \frac{4}{3}

 \frac{1}{4}  \times  \frac{4}{3}  =  \frac{4}{12}

 \frac{4}{12}  -  \frac{1}{8}

take LCM of 12 and 8

24 is the LCM of 12 and 8

 \frac{4}{12}  \times  \frac{2}{2}  -  \frac{1}{8}  \times  \frac{3}{3}  =

 \frac{8}{24}  -  \frac{3}{24}  =  \frac{5}{24}

so /24 is the answer

Answered by Choudharipawan123456
0

Answer:

=>> \frac{5}{24}

Step-by-step explanation:

Given that:-

\frac{3}{4}\times \frac{4}{9}-\frac{1}{8}

To find:- The value of the expression,

First of all, we have to simplify: \frac{3}{4}\times \frac{4}{9}

=> \frac{3}{4}\times \frac{4}{9}-\frac{1}{8}

Canceling the terms, we get

=> \frac{1}{4}\times \frac{4}{3}-\frac{1}{8}

Multiplying the fraction,

=> \frac{4}{12}-\frac{1}{8}

The LCM of 12 and 8 is 24.

=> \frac{4}{12}\times \frac{2}{2} -\frac{1}{8}\times \frac{3}{3}

=> \frac{8}{24}-\frac{3}{24}

=> \frac{8-3}{24}

Subtracting the numbers in the numerator,

=>> \frac{5}{24}

Hence, the required solution is \frac{5}{24}.

Similar questions