Math, asked by rohitdnaik2001, 11 months ago

solve this problem by using quadratic equation form m2 - 7m-169=0​

Answers

Answered by attr
0

Answer:

m² - 7m -169 = 0

a = 1 ; b =-7 ; c = -169

By sridaracharyas formula

- b ± √b² - 4ac /2a

or, 7± √49 +676 / 2*1

or, 7 ± √725 / 2

or, 7 + 26.92 /2 , 7- 26.92 /2

or, 16.96, -9.96

hence ,

m =16.96

or

m= -9.96

Answered by Anonymous
0

\large\red{\text\:Answer}

\boxed{m =  \frac{7 +  5\sqrt{29} }{2}}     \:  \: or \:  \: \boxed{ m =  \frac{7 -5 \sqrt{29}  }{2}} are the roots of the given quadratic equation.

\large\pink{\text\:Explanation}

{m}^{2}  - 7m - 169 = 0 \\  \\ a = 1 \:  \: b =  - 7 \:  \: c =  - 169 \\  \\ m \:  =  \frac{ - b  \pm\sqrt{ {b}^{2} - 4ac } }{2a} \\  \\ \implies \: m =  \frac{ - ( - 7)\pm \sqrt{ {( - 7)}^{2} - 4 \times 1 \times ( - 169) } }{2 \times 1}  \\  \\  \implies \: m =  \frac{7 \pm\sqrt{49  + 676} }{2}  \\  \\  \implies \: m =  \frac{7\pm \sqrt{725} }{2}  \\  \\  \implies \: m =  \frac{7\pm \sqrt{25 \times 29} }{2}  \\  \\  \implies \: m =  \frac{7\pm5 \sqrt{29} }{2} \\  \\  \implies \:  \boxed{m =  \frac{7 +  5\sqrt{29} }{2}}     \:  \: or \:  \: \boxed{ m =  \frac{7 -5 \sqrt{29}  }{2}}

Similar questions