Math, asked by yadavds100, 11 months ago

solve this problem fast

Attachments:

Answers

Answered by kaushik05
23

  \huge \red{\mathfrak{solution}}

Given:

 \star \:  \cosec \theta = 2

To show :

  \red\star \:  \cot \theta +  \frac{ \sin \theta}{1 +  \cos \theta}  = 2 \\

LHS

 \rightarrow \:  \frac{ \cos \theta}{ \sin \theta}  +  \frac{sin \theta}{1 + cos \theta}  \\  \\  \rightarrow  \:  \frac{ \cos \theta +  { \cos}^{2}  \theta +  { \sin}^{2}  \theta}{ \sin \theta(1 +  \cos \theta)}  \\  \\  \rightarrow \:  \frac{ \cancel{1 +  \cos \theta}}{ \sin \theta \cancel{(1 +  \cos \theta)} }  \\  \\  \rightarrow \:  \frac{1}{ \sin \theta}  \\  \\  \rightarrow \:  \cosec \theta \\  \\  \rightarrow \: 2

LHS = RHS

Formula :

cot@= cos@/sin@

sin^2@+cos^2@= 1

sin@=1/cosec@

 \huge \boxed{ \mathfrak{ \green{proved}}}

Answered by Anonymous
1

Step-by-step explanation:

Given:

\star \: \cosec \theta = 2⋆cosecθ=2

To show :

\begin{lgathered}\red\star \: \cot \theta + \frac{ \sin \theta}{1 + \cos \theta} = 2 \\\end{lgathered}⋆cotθ+1+cosθsinθ=2

LHS

\begin{lgathered}\rightarrow \: \frac{ \cos \theta}{ \sin \theta} + \frac{sin \theta}{1 + cos \theta} \\ \\ \rightarrow \: \frac{ \cos \theta + { \cos}^{2} \theta + { \sin}^{2} \theta}{ \sin \theta(1 + \cos \theta)} \\ \\ \rightarrow \: \frac{ \cancel{1 + \cos \theta}}{ \sin \theta \cancel{(1 + \cos \theta)} } \\ \\ \rightarrow \: \frac{1}{ \sin \theta} \\ \\ \rightarrow \: \cosec \theta \\ \\ \rightarrow \: 2\end{lgathered}→sinθcosθ+1+cosθsinθ→sinθ(1+cosθ)cosθ+cos2θ+sin2θ→sinθ(1+cosθ)1+cosθ→sinθ1→cosecθ→2

LHS = RHS

Similar questions