Math, asked by ak5190730, 6 months ago

Solve this Problem Fast answer ​

Attachments:

Answers

Answered by Anonymous
3

Area: ½ x (product of the lengths of the diagonals)

Perimeter: 4 x side

Number of vertices: 4

Number of edges: 4

Properties: Isotoxal figure, Convex polygon

Type: Parallelogram, Quadrilateral, Kite

Line of symmetry: 2

Answered by Anonymous
1

  \\  \\ \large\underline{ \underline{ \sf{ \red{correct \: question:} }}}  \\  \\  \tt \: ( { \frac{4}{11} )}^{x - 1}  =  { (\frac{11}{4} )}^{2x - 5}  \\  \\

 \\  \\  \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\  \tt \:  ({ \frac{4}{11} )}^{x - 1}  =  {  (\frac{11}{4} ) }^{2x - 5}   \\  \\  \\  \boxed{ \bf \:  \frac{a}{b} =  ({ \frac{b}{a} )}^{ - 1}  }\\  \\  \\  \tt \:  ({ \frac{4}{11} )}^{x - 1}  =  {( { \frac{4}{11} }^{ - 1}) }^{2x  - 5}  \\  \\  \\ \boxed{ \bf \:  { ({a}^{x} )}^{y}  =  {a}^{xy} }  \\  \\  \\  \tt \:    ({ \frac{4}{11} )}^{x - 1}  =  {( \frac{4}{11}) }^{ - 2x + 5}  \\  \\  \\  \sf \: since \:  coefficient \: is \: same...so \: power \: will \: be \: same \\  \\ \\  \tt \: x - 1 =  - 2x + 5 \\  \\  \\  \tt \: x + 2x = 5  + 1 \\  \\  \\  \tt \: 3x = 6 \\  \\  \\  \boxed{ \bf  \pink{\:x = 2 }}

Similar questions