Math, asked by diya0202, 1 month ago

Solve this problem....give entire process.​

Attachments:

Answers

Answered by mathdude500
10

 \green{\large\underline{\sf{Given- }}}

If pqr = 1, prove that

\sf{ \:\:\dfrac{1}{1 + p +  {q}^{ - 1} } + \dfrac{1}{1 + q +  {r}^{ - 1} }  + \dfrac{1}{1 + r +  {p}^{ - 1} }=1}

 \green{\large\underline{\sf{Solution-}}}

Given that,

 \green{\rm :\longmapsto\:pqr = 1}

Consider,

 \blue{\bf :\longmapsto\:\dfrac{1}{1 + p +  {q}^{ - 1} }}

\rm \:  =  \: \dfrac{1}{1 + p + \dfrac{1}{q} }

\rm \:  =  \: \dfrac{q}{q + pq + 1}

 \blue{\bf :\longmapsto\:\dfrac{1}{1 + p +  {q}^{ - 1} }= \dfrac{q}{pq + q + 1} }

Now, Consider

 \blue{\bf :\longmapsto\:\dfrac{1}{1 + q +  {r}^{ - 1} }}

\rm \:  =  \: \dfrac{1}{1 + q + pq}

\red{\bigg \{ \because \:pqr = 1 \:  \: \rm \implies\:pq =  {r}^{ - 1}  \bigg \}}

So,

 \blue{\bf :\longmapsto\:\dfrac{1}{1 + q +  {r}^{ - 1} }= \dfrac{1}{pq + q + 1} }

Now, Consider,

 \blue{\bf :\longmapsto\:\dfrac{1}{1 + r +  {p}^{ - 1} }}

\rm \:  =  \: \dfrac{1}{1 + \dfrac{1}{pq}  + \dfrac{1}{p} }

\rm \:  =  \: \dfrac{1}{\dfrac{pq + 1 + q}{pq} }

\rm \:  =  \: \dfrac{pq}{pq +q + 1}

So,

 \blue{\bf :\longmapsto\:\dfrac{1}{1 + r +  {p}^{ - 1} }= \dfrac{pq}{pq + q + 1} }

Now, Consider,

 \blue{\bf :\longmapsto\:\dfrac{1}{1 + p +  {q}^{ - 1} } + \dfrac{1}{1 + q +  {r}^{ - 1} }  + \dfrac{1}{1 + r +  {p}^{ - 1} } }

\rm \:  =  \: \dfrac{q}{pq + q + 1}  + \dfrac{1}{pq + q + 1}  + \dfrac{pq}{pq + q + 1}

\rm \:  =  \: \dfrac{pq + q + 1}{pq + q + 1}

\rm \:  =  \: 1

Hence,

\red{ \boxed{ \sf{ \:\:\dfrac{1}{1 + p +  {q}^{ - 1} } + \dfrac{1}{1 + q +  {r}^{ - 1} }  + \dfrac{1}{1 + r +  {p}^{ - 1} } = 1}}}

Similar questions