Math, asked by criticalmangovids, 11 months ago

Solve this problem guys

Attachments:

Answers

Answered by manishameghval
3

Answer:

assume that the box has a , b, c, d then we get a+b=8, c-d=6, a+c=13, b+d=8 . then solve a+b =8 and a+c=13 . by substituting those two we get

-c-b=5 assume these as eq 1

then similarly solve next two, we get c-b=-2 assume these as eq 2

by solving eq 1 and 2 , we get 2b=3

b=3/2 =1.5

sub b value in a+b=8

a+3/2 =8

a=6.5

similarly sub b value in b+d=8

3/2+d=8

d=6.5

sub a value in a+c=13

13/2+c=13

c=6.5

so, substitute a, b, c, d in your question then you get your required answer

Answered by rajsingh24
75

{\boxed{\boxed{\underline{\red{\rm{QUESTION :}}}}}}

  \rm \:  { \boxed{}} \:  +  {  \: \boxed{}} \:  = 8 \\   \:  \ -   \:  \:  \:  \: \: -  \\  \:  \:   { \boxed{}} \:   -  {  \: \boxed{}} = 6 \\   \:  \:  =  \:  \:  \:  \:  \:   \:  =  \\  \:  \: 13 \:  \:  \: \:  \:  \:  8

{\boxed{\boxed{\underline{\red{\rm{To \: Find :}}}}}}

The blank space and numbers.

{\boxed{\boxed{\underline{\red{\rm{Assumption:}}}}}}

  \rm \:  { \boxed{a}} \:  +  {  \: \boxed{b}} \:  = 8 \\   \:  \ -   \:  \:  \:  \: \: -  \\  \:  \:   { \boxed{c}} \:   -  {  \: \boxed{d}} = 6 \\   \:  \:  =  \:  \:  \:  \:  \:   \:  =  \\  \:  \: 13 \:  \:  \: \:  \:  \:  8

{\boxed{\boxed{\underline{\red{\rm{SOLUTION :}}}}}}

\leadstoWe have to find the numbers whose sum is 8.

\leadsto So, we have, a+b = 8 , c-d = 6, a+c = 13 or b+d = 8.

\implies As per Assumption,

\leadsto a + b = 8

\leadsto a = 8 - b

\leadsto a + c = 13 ------(1)

\implies put a value in equ.(1)

\leadsto (8-b)+ c = 13

\leadsto 8 - b + c = 13

\leadsto -b + c = 13 -8

\leadsto c = 5+b--------(2)

\leadsto similarly, c-d = 6 --------(3)

\implies put c value in equ. (3)

\leadsto 5+b +d = 6

\leadsto b+d = 6-5

\leadsto b+d = 1

\leadsto .°. b = 1+d -------(4)

\implies Now, we have b+d = 8 .------(5)

\leadsto put b value in equ. (5)

\leadsto 1+d+d = 8

\leadsto 2d = 8-1

\leadsto {\boxed{d = 3.5}}

\implies put d value in equ. (3)

\leadsto b = 1+3.5

\leadsto {\boxed{b = 4.5}}

\implies put b value in equ. (2)

\leadsto c = 5+ 4.5

\leadsto {\boxed{<strong> </strong><strong>C</strong><strong> </strong><strong>=</strong><strong> </strong><strong>9</strong><strong>.</strong><strong>5</strong>}}

\implies put c value in equ. (1)

\leadsto a + 9.5 = 13

\leadsto a = 13-9.5

\leadsto {\boxed{a = 3.5}}

_____________

{\boxed{\boxed{\underline{\red{\rm{Since :}}}}}}

 \rm \:  { \boxed{3.5}} \:  +  {  \: \boxed{4.5}} \:  = 8 \\   \:  \ -   \:  \:  \:  \: \: -  \\  \:  \:   { \boxed{9.5}} \:   -  {  \: \boxed{3.5}} = 6 \\   \:  \:   \:  \:  \:   =  \:  \:  \:   \:  \:  \:   \:  \:  \:  \:  \:  =  \\  \:  \: 13 \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  8 \:

Similar questions