Math, asked by vedavatimothukuru, 30 days ago

solve this problem .
I will give you 10 points

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{cos(log {x}^{2}) }{ {x}^{4} } dx

can be rewritten as

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{cos(2 \: log {x}) }{ {x}^{4} } dx

\red{\bigg \{ \because \:  log( {x}^{y} ) = y log(x)  \bigg \}}

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\tt \dfrac{cos(2 \: log {x}) }{ {x}^{4} } dx

To evaluate this integral, we use method of Substitution.

\rm :\longmapsto\:Put \: logx = y

\rm :\implies\:x =  {e}^{y}

\rm :\implies\:dx =  {e}^{y} \: dy

On substituting all these values, we get

\rm :\longmapsto\:I = \displaystyle\int\tt \dfrac{cos2y}{{e}^{4y}} {e}^{y}dy

\rm :\longmapsto\:I = \displaystyle\int\tt \dfrac{cos2y}{{e}^{3y}}dy

\rm :\longmapsto\:I = \displaystyle\int\tt {e}^{ - 3y}cos2y \: dy -  -  - (1)

now integrating using By parts, we get

\rm \:  =  \:{e}^{ - 3y}\displaystyle\int\tt cos2ydy - \displaystyle\int\tt \bigg(\dfrac{d}{dy}{e}^{ - 3y}\displaystyle\int\tt cos2ydy\bigg)dy

\rm \:  =  \: {e}^{ - 3y}\dfrac{sin2y}{2} - \displaystyle\int\tt {e}^{ - 3y}( - 3)\dfrac{sin2y}{2}dy

\rm \:  =  \: \dfrac{{e}^{ - 3y}sin2y}{2} +  \dfrac{3}{2}\displaystyle\int\tt {e}^{ - 3y}sin2ydy

\rm :\longmapsto\: I =  \: \dfrac{{e}^{ - 3y}sin2y}{2} +  \dfrac{3}{2}I_1 -  -  - (2)

where,

\rm :\longmapsto\:I_1 = \displaystyle\int\tt {e}^{ - 3y}sin2ydy

On integrating by parts, we get

\rm \:  =  \:{e}^{ - 3y}\displaystyle\int\tt sin2ydy - \displaystyle\int\tt \bigg(\dfrac{d}{dy}{e}^{ - 3y}\displaystyle\int\tt sin2ydy\bigg)dy

\rm \:  =   - \: {e}^{ - 3y}\dfrac{cos2y}{2}  + \displaystyle\int\tt {e}^{ - 3y}( - 3)\dfrac{cos2y}{2}dy

\rm \:  =  \: -  \dfrac{{e}^{ - 3y}cos2y}{2}  -   \dfrac{3}{2}\displaystyle\int\tt {e}^{ - 3y}cos2ydy

\rm \:  =  \: -  \dfrac{{e}^{ - 3y}cos2y}{2}  -   \dfrac{3}{2}I

\red{\bigg \{ \because \: using \: (1)\bigg \}}

\bf\implies \:I_1  =  -  \: \dfrac{{e}^{ - 3y}cos2y}{2}  -   \dfrac{3}{2}I -  -  - (3)

On substituting equation (3) in equation (2), we get

\rm :\longmapsto\: I =  \: \dfrac{{e}^{ - 3y}sin2y}{2} +  \dfrac{3}{2}\bigg( - \dfrac{{e}^{ - 3y}cos2y}{2}  -   \dfrac{3}{2}I\bigg)

\rm :\longmapsto\: I =  \: \dfrac{{e}^{ - 3y}sin2y}{2} +\bigg( - \dfrac{3{e}^{ - 3y}cos2y}{4}  -   \dfrac{9}{4}I\bigg)

\rm :\longmapsto\: I =  \: \dfrac{{e}^{ - 3y}sin2y}{2}  - \dfrac{3{e}^{ - 3y}cos2y}{4}  -   \dfrac{9}{4}I

\rm :\longmapsto\: I  +  \dfrac{9}{4}I=  \: \dfrac{{e}^{ - 3y}sin2y}{2}  - \dfrac{3{e}^{ - 3y}cos2y}{4}

\rm :\longmapsto\:  \dfrac{4 + 9}{4}I=  \: \dfrac{{e}^{ - 3y}sin2y}{2}  - \dfrac{3{e}^{ - 3y}cos2y}{4}

\rm :\longmapsto\:  \dfrac{13}{4}I=  \: \dfrac{{e}^{ - 3y}sin2y}{2}  - \dfrac{3{e}^{ - 3y}cos2y}{4}

\rm :\longmapsto\:  \dfrac{13}{4}I=  \: \dfrac{2{e}^{ - 3y}sin2y - 3{e}^{ - 3y}cos2y}{4}

\rm :\longmapsto\: 13 \: I=  \: 2{e}^{ - 3y}sin2y - 3{e}^{ - 3y}cos2y

\rm :\longmapsto\: 13 \: I=  \: {e}^{ - 3y}(2sin2y - 3cos2y)

\rm :\longmapsto\:  \: I=  \dfrac{{e}^{ - 3y}}{13}  \:(2sin2y - 3cos2y) + c

Thus,

\rm :\longmapsto\:  \: I=  \dfrac{{x}^{ - 3}}{13}  \:(2sin2(logx) - 3cos2(logx)) + c

Basic Concept used :-

Integration by Parts

✏️See the rule:

  • ∫u v dx = u∫v dx −∫u' (∫v dx) dx

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

Similar questions