Physics, asked by sathvikchakravarthi, 11 months ago

solve this problem its important​

Attachments:

Answers

Answered by yoshithagavaskar
2

Answer:

√gh...

dropped body--u=0

s=1/2gt^2

h/2=1/2gt^2

t=√h/g    ⇒ 1

vertically projected---

s=ut-1/2gt^2

h/2=v√h/g-[g/2(h/g)]         (∵from 1)

⇒v=h√g/h

  =√gh

 

Explanation:

Answered by nirman95
3

Answer:

Given:

Body A thrown vertically upwards with velocity

v_{0} and body B dropped from height H. They meet at height H/2

To find:

Value of v_(0)/2

Calculation:

For the body B , we can say that :

 \boxed{ \large{ \bold{ \dfrac{H}{2}  =  \dfrac{1}{2} g {t}^{2} }}}

For body A , we can say that :

  \boxed{\large{ \bold{ \dfrac{H}{2}  = v_{0}t   -  \frac{1}{2}g {t}^{2}   }}}

Adding the 2 Equations , we get :

 \large{ \bold{ \therefore  \dfrac{H}{2}  + \dfrac{H}{2}   = v_{0}t      }}

 \large{ \bold{  =  > H = v_{0}t      }}

  \bold{ \large{=  >  v_{0}=  \dfrac{H}{t} }}

Putting the value of t = √(h/g) :

  \bold{ \large{=  >  v_{0}=  \dfrac{H}{ \sqrt{ \frac{H}{g} } } }}

  \bold{ \large{=  >  v_{0}=   \sqrt{gH} }}

So final answer :

  \boxed{\red{  \bold{ \huge{ v_{0}=   \sqrt{gH} }}}}

Similar questions