Math, asked by rohitsrivastavp5ya57, 1 year ago

Solve this problem must

Attachments:

Answers

Answered by Skidrow
16

\tan^{ - 1} (  \frac{\cos(x)}{1 +  \sin(x) })<br /> \\ we \: know \: that \:  \\ \cos(x) =  \cos ^{2} ( \frac{x}{2} ) -  \sin ^{2} ( \frac{x}{2}  )  \\ <br />1 +  \sin(x)   = \: ( \sin( \frac{x}{2} )   +  \cos( \frac{x}{2} ) \: )  ^{2}  \\ <br />Now Plugin \:  these \:  values .. we  \: get <br /> \\  \tan^{ - 1} ( \frac{\cos ^{2} ( \frac{x}{2} ) -  \sin ^{2} ( \frac{x}{2}  ) }{\: ( \sin( \frac{x}{2} )   +  \cos( \frac{x}{2} ) \: )  ^{2} }  \\  \\
 \tan^{ - 1}( \frac{ \cos( \frac{x}{2}) -  \sin( \frac{x}{2} )  ) }{ \cos( \frac{x}{2} )+ \sin( \frac{x}{2} )  )}
divide \: the \: numerator \: and \: Denominator \: by \:  \cos( \frac{x}{2} )
 = &gt;  \tan^{ - 1}( \frac{1 -  \tan( \frac{x}{2} ) }{1 +  \tan( \frac{x}{2} ) } )
 =  \:  \tan^{ - 1}( \tan( \frac{\pi}{4} -  \frac{x}{2} ))

 =  &gt;  \frac{\pi}{4}  -  \frac{x}{2}




Similar questions