solve this problem please
give me explanation
Attachments:
Answers
Answered by
3
∠ACB = 90° {angle in a semi-circle}
∠ABC=180-(20+90) {Angle sum property}
∴∠ABC=70°
∠ABC+∠ADC=180 {opp. angles of a cyclic quadrilateral}
∴∠ADC=110°
In ΔADC:
∠A=∠C {Isosceles Δ }
2∠A+∠D=180° {angle sum property}
∴2∠A=70
&∠A=35°
i.e. ∠DAC=35°
∠ABC=180-(20+90) {Angle sum property}
∴∠ABC=70°
∠ABC+∠ADC=180 {opp. angles of a cyclic quadrilateral}
∴∠ADC=110°
In ΔADC:
∠A=∠C {Isosceles Δ }
2∠A+∠D=180° {angle sum property}
∴2∠A=70
&∠A=35°
i.e. ∠DAC=35°
Similar questions