Math, asked by sautik56, 1 day ago

Solve this problem
 {\large{ \bf{let \: f(x) = \begin{cases}x \sin\dfrac{1}{x} \:  \:  \: if \:  \: x  \neq0 \\ 0 \:  \: when \:  \: x = 0\end{cases}}}}
Check differentiability and continuity at x = 0​

Answers

Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = \begin{cases}x \sin\dfrac{1}{x} \: \: \: if \: \: x \neq0 \\ \\  0 \: \: when \: \: x = 0\end{cases} \\

Case :- 1 To discuss the continuity of f(x) at x = 0

We know,

A function f(x) is said to be continuous at x = a, iff

\boxed{\sf{  \: \: \rm \: f(a) = \displaystyle\lim_{x \to a ^{ - } }\rm f(x) = \displaystyle\lim_{x \to a^{ + } }\rm f(x) \:  \: }} \\

Now,

\rm \: f(0) = 0 \\

Consider LHL at x = 0

\rm \: \displaystyle\lim_{x \to 0 ^{ - } }\rm f(x) \\

\rm \: =  \: \displaystyle\lim_{x \to 0 ^{ - } }\rm x \: sin \frac{1}{x}  \\

To evaluate this limit, we use method of Substitution,

So, Substitute

\rm \: x = 0 - h, \:  \: as \: x \:  \to \: 0, \:  \: so \: h \:  \to \: 0 \\

So, on substituting this, we get

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm ( - h) \: sin \frac{1}{( - h)}  \\

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm   h \: sin \frac{1}{ h}  \\

\rm \: =  \: 0 \times an \: oscillatory \: number \: lies \: between \:  - 1 \: and \: 1 \\

\rm \: =  \: 0 \\

Now, Consider RHL at x = 0

\rm \: \displaystyle\lim_{x \to 0 ^{ + } }\rm f(x) \\

\rm \: =  \: \displaystyle\lim_{x \to 0 ^{ +  } }\rm x \: sin \frac{1}{x}  \\

Now, Substitute

\rm \: x = 0 +  h, \:  \: as \: x \:  \to \: 0, \:  \: so \: h \:  \to \: 0 \\

So, using this, we get

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm   h \: sin \frac{1}{ h}  \\

\rm \: =  \: 0 \times an \: oscillatory \: number \: lies \: between \:  - 1 \: and \: 1 \\

\rm \: =  \: 0 \\

So, from above we concluded that

\rm \: f(0) \:  =  \: \displaystyle\lim_{x \to 0 ^{ - } }\rm f(x) \:  =  \: \displaystyle\lim_{x \to 0 ^{  +  } }\rm f(x) \:  =  \: 0 \\

\rm\implies \:f(x) \: is \: continuous \: at \: x \:  =  \: 0 \\

Case :- 2 Now, To check Differentiability at x = 0

We know,

A function f(x) is said to be differentiable at x = a iff

\boxed{\sf{  \: \: \displaystyle\lim_{x \to a^{ - } }\rm  \frac{f(x) - f(a)}{x - a} \:  =  \:  \displaystyle\lim_{x \to a^{  +  } }\rm  \frac{f(x) - f(a)}{x - a} \:  \: }} \\

So, from given function, we have

\rm \: f(0) = 0 \:  \\

Now, Consider LHD

\rm \:  \displaystyle\lim_{x \to 0^{ - } }\rm  \frac{f(x) - f(0)}{x - 0} \\

\rm \:   =  \: \displaystyle\lim_{x \to 0^{ - } }\rm  \frac{x \: sin \dfrac{1}{x}  - 0}{x} \\

\rm \:   =  \: \displaystyle\lim_{x \to 0^{ - } }\rm  \frac{x \: sin \dfrac{1}{x}}{x} \\

\rm \: =  \: \displaystyle\lim_{x \to 0 ^{ - } }\rm sin \frac{1}{x}  \\

Now, Substitute

\rm \: x = 0 - h, \:  \: as \: x \:  \to \: 0, \:  \: so \: h \:  \to \: 0 \\

So, on using this, we get

\rm \: =  \: \displaystyle\lim_{h \to 0}\rm sin \frac{1}{( - h)}  \\

\rm \: =  \:  an \: oscillatory \: number \: lies \: between \:  - 1 \: and \: 1 \\

\rm\implies \: \displaystyle\lim_{x \to 0^{ - } }\rm  \frac{f(x) - f(0)}{x - 0} \: does \: not \: exist \\

\rm\implies \:f(x) \: is \: not \: differentiable \: at \: x \:  =  \: 0 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by maheshtalpada412
12

Step-by-step explanation:

  \tt\text{To check continuity:} \:  \:  \[ \underset{x \rightarrow 0} { \lim} \quad \: f(x)=f(0)=0 \]

Now,

\[ \begin{array}{l} \tt \underset{x \rightarrow 0}{ \lim}  \:  \:  \: f(x) \\  \\ =\underset{x \rightarrow 0}{  \lim}\left( \tt \: x \sin \left(\frac{1}{x}\right)\right) \\  \\ =0 \end{array} \]

 \text{Thus, \( \tt f(x) \) is continuous at \( \tt x=0 \).}

 \text{To check differentiability}

 \[ \begin{aligned}  \tt \: f^{\prime}(0) & \tt=\lim _{x \rightarrow 0}\left(\frac{f(x)-f(0)}{x-0}\right) \\  \\ & \tt=\lim _{x \rightarrow 0}\left(\frac{x \sin \left(\frac{1}{x}\right)-0}{x-0}\right) \\  \\ & \tt=\lim _{x \rightarrow 0}\left(\sin \left(\frac{1}{x}\right)\right) \\ \\  &=\text { Oscillating a finite value between } \\  &-1 \text { to } 1 \end{aligned} \]

 \text{Thus, \( \tt f(x) \) is not differentiable at \( \tt x=0 \).}

Similar questions