Math, asked by sautik56, 1 day ago

Solve this problem

{ \orange{ \boxed{ \boxed{ \large{ \purple{sin \left(  \frac{1}{4} \sin^{ - 1}  \frac{ \sqrt{63} }{8}   \right)}}}}}}

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given expression is

\rm \: sin \left( \dfrac{1}{4} \sin^{ - 1} \dfrac{ \sqrt{63} }{8} \right) \\

Let assume that

\rm \:  {sin}^{ - 1}\dfrac{ \sqrt{63} }{8}  = x

\rm\implies \:x \:  \in \: \bigg(0, \: \dfrac{\pi}{2} \bigg)  \\

\rm\implies \:sinx, \: cosx \:  > 0 \\

So, it means, we have to find the value of

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\sf{  \:  \:  \:sin \frac{x}{4}  \:  \: \: }} \\

Now,

\rm \:  {sin}^{ - 1}\dfrac{ \sqrt{63} }{8}  = x

\rm \: sinx =  \dfrac{ \sqrt{63} }{8}

\rm\implies \:\rm \:  {sin}^{2} x =  \dfrac{ 63 }{64} \\

\rm \: 1 -  {cos}^{2}x = \dfrac{63}{64}  \\

\rm \:  -  {cos}^{2}x = \dfrac{63}{64} - 1  \\

\rm \:  -  {cos}^{2}x = \dfrac{63 - 64}{64}  \\

\rm \:  -  {cos}^{2}x  \: = \:  -  \:  \dfrac{1}{64}  \\

\rm \: {cos}^{2}x  \: = \:  \:  \dfrac{1}{64}  \\

\rm\implies \:\rm \: cosx  \: = \:  \:  \dfrac{1}{8}  \\

We know,

\boxed{\sf{  \:cos2x =  {2cos}^{2}x - 1 \: }} \\

So, using this identity, we get

\rm \:  {2cos}^{2}\dfrac{x}{2} - 1  = \dfrac{1}{8}  \\

\rm \:  {2cos}^{2}\dfrac{x}{2}  = \dfrac{1}{8} + 1  \\

\rm \:  {2cos}^{2}\dfrac{x}{2}  = \dfrac{1 + 8}{8}  \\

\rm \:  {2cos}^{2}\dfrac{x}{2}  = \dfrac{9}{8}  \\

\rm \:  {cos}^{2}\dfrac{x}{2}  = \dfrac{9}{16}  \\

\rm\implies \:\rm \:  {cos}\dfrac{x}{2}  = \dfrac{3}{4}  \\

We know,

\boxed{\sf{  \:cos2x = 1 -  {2sin}^{2}x \: }} \\

So, using this identity, we get

\rm \: 1 -  {2sin}^{2}\dfrac{x}{4} = \dfrac{3}{4}  \\

\rm \:  -  {2sin}^{2}\dfrac{x}{4} = \dfrac{3}{4} - 1\\

\rm \:  -  {2sin}^{2}\dfrac{x}{4} = \dfrac{3 - 4}{4}\\

\rm \:  -  {2sin}^{2}\dfrac{x}{4} = \:  -  \:  \dfrac{1}{4}\\

\rm \:  {2sin}^{2}\dfrac{x}{4} = \:  \:  \dfrac{1}{4}\\

\rm \:  {sin}^{2}\dfrac{x}{4} = \:  \:  \dfrac{1}{8}\\

\rm \:  sin\dfrac{x}{4} = \:  \:  \dfrac{1}{ \sqrt{8} }\\

\rm\implies \:\rm \:  sin\dfrac{x}{4} = \:  \:  \dfrac{1}{ 2\sqrt{2} }\\

Hence,

\rm\implies \: \:\boxed{\sf{  \:  \: \rm \: sin \left( \dfrac{1}{4} \sin^{ - 1} \dfrac{ \sqrt{63} }{8} \right) \:  =  \:  \frac{1}{2 \sqrt{2} } \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y =  {sin}^{ - 1}(sinx) & \sf  x \:  \: if -\dfrac{\pi  }{2} \leqslant x \leqslant \dfrac{\pi  }{2}\\ \\ \sf y =  {cos}^{ - 1}(cosx) & \sf x \:  \: if \: 0 \leqslant y \leqslant \pi \\ \\ \sf y =  {tan}^{ - 1}(tanx) & \sf x \:  \: if \:  - \dfrac{\pi  }{2} < x < \dfrac{\pi  }{2}\\ \\ \sf y =  {cosec}^{ - 1}(cosecx) & \sf x \:  \: if \: x \:  \in \: \bigg[ - \dfrac{\pi}{2}, \: \dfrac{\pi  }{2}\bigg] -  \{0 \}\\ \\ \sf y =  {sec}^{ - 1}(secx) & \sf x \:  \: if \: x \:  \in \: [0, \: \pi] \:   -  \: \bigg\{\dfrac{\pi  }{2}\bigg\}\\ \\ \sf y =  {cot}^{ - 1}(cotx) & \sf x \:  \: if \:  \:  \in \: \bigg( -  \dfrac{\pi  }{2} , \dfrac{\pi  }{2}\bigg) -  \{0 \} \end{array}} \\ \end{gathered} \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosecx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\

Answered by talpadadilip417
8

Step-by-step explanation:

 \begin{aligned}\\&  \\  \\&   \tt \color{darkred} Let \sin ^{-1} \frac{\sqrt{63}}{8}=x  \qquad\Rightarrow \sin x=\frac{\sqrt{63}}{8} \\  \\&   \tt \color{red}\left[\because \sin ^{2} x+\cos ^{2} x=1 \Rightarrow \cos ^{2} x=1-\sin ^{2} x\right.  \\  \\&\\  \\&   \tt \color{maroon} \cos ^{2} x=1-\frac{63}{64}=\frac{1}{64} \\  \\& \\  \\&   \tt \color{orange}\Rightarrow \cos x=\frac{1}{8} \\  \\&\\  \\&   \tt \color{navy}\left[\because 1+\cos x=2 \cos ^{2} \frac{x}{2} \Rightarrow \cos ^{2} \frac{x}{2}=\frac{1+\frac{1}{8}}{2}=\frac{9}{16} \Rightarrow \cos \frac{x}{2}=\frac{3}{4}\right]  \\  \\&\\  \\&   \tt \color{blue}\left[\because 1+\cos \frac{x}{2}=2 \cos ^{2} \frac{x}{4} \Rightarrow \cos ^{2} \frac{x}{4}=\frac{1+\frac{3}{4}}{2}=\frac{7}{8}\right] \\  \\\\\ &   & \\  \\&   \tt \color{green}Now, \Rightarrow \sin ^{2} \frac{x}{4}+\cos ^{2} \frac{x}{4}=1 \\  \\& \\  \\&   \tt \color{violet}\Rightarrow \sin ^{2} \frac{x}{4}=1-\frac{7}{8}=\frac{1}{8} \\  \\&\\  \\&   \tt \color{blueviolet} \Rightarrow \sin \frac{x}{4}=\frac{1}{\sqrt{8}}  \\  \\& \\  \\&   \tt \color{purple}Now,  \Rightarrow \sin \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)=\sin \frac{x}{4}  \\  \\&\\  \\&   \tt \color{darkcyan}=\frac{1}{\sqrt{8}} \\  \\&\\  \\&   \tt \color{olive} \Rightarrow \sin \frac{x}{4}=\frac{1}{2 \sqrt{2}} \end{aligned}

Similar questions