solve this problem
which is written in copy
Attachments:
Answers
Answered by
4
Answer:
4
Step-by-step explanation:
Given, AP is 25,22,19...116
First term, a = 25.
Common difference, d = -3.
Let the number of terms be n.
Given, Sn = 116.
Now,
Sum of n terms of an AP sn = (n/2)[2a + (n - 1) * d]
⇒ 116 = (n/2)[50 + (n - 1) * (-3)]
⇒ 232 = (n)[50 - 3n + 3]
⇒ 232 = n[53 - 3n]
⇒ 232 = 53n - 3n²
⇒ 53n - 3n² - 232 = 0
⇒ 3n² - 53n + 232 = 0
⇒ 3n² - 29n - 24n + 232 = 0
⇒ n(3n - 29) - 8(3n - 29) = 0
⇒ (n - 8)(3n - 29) = 0
⇒ n = 8, 29/3{∵not possible}
⇒ n = 8
∴ Last term t₈ = a + (n - 1) * d
= 25 + (8 - 1) * (-3)
= 25 - 21
= 4.
Therefore, Last term is 4.
Hope it helps!
Similar questions