solve this..........................Q-12
Attachments:
Answers
Answered by
7
if x^4 + 1 / x^4 = 119 , then x - ( 1 / x ) = ?
solve for (x-1/x) :
----------------------
using identities :
-----------------------
(1) a^2+ b^2 +2ab = ( a + b)^2
(2) a^2 + b^2 - 2ab = ( a - b)^2
--------------------------------------------------------
x^4 + 1/x^4 = 119
(x^2)^2 + (1/x^2)^2 + 2(x^2)(1/x^2) - 2(x^2) (1/x^2) = 119
( x^2 + 1/x^2 )^2 - 2 (x^2) (1 /x^2) = 119
(x^2 + 1/x^2 )^2 - 2 = 119
(x^2 + 1/x^2)^2 = 119 + 2
(x^2 + 1/x^2)^2 = 121
(x^2 + 1/x^2) = √121
( x^2 + 1/x^2 ) = 11
( x )^2 + (1/x )^2 + 2(x)(1/ x) - 2(x)(1/x) = 11
( x - 1/x )^2 + 2 (x ) ( 1/ x ) = 11
( x - 1/x )^2 + 2 = 11
( x - 1/x )^2 = 11 - 2
( x - 1/x )^2 = 9
x - 1/x = √9
x - 1/x = 3
therefore , value of ( x - 1/ x ) = 3
Answer : 3
--------------------------------------------------------
solve for (x-1/x) :
----------------------
using identities :
-----------------------
(1) a^2+ b^2 +2ab = ( a + b)^2
(2) a^2 + b^2 - 2ab = ( a - b)^2
--------------------------------------------------------
x^4 + 1/x^4 = 119
(x^2)^2 + (1/x^2)^2 + 2(x^2)(1/x^2) - 2(x^2) (1/x^2) = 119
( x^2 + 1/x^2 )^2 - 2 (x^2) (1 /x^2) = 119
(x^2 + 1/x^2 )^2 - 2 = 119
(x^2 + 1/x^2)^2 = 119 + 2
(x^2 + 1/x^2)^2 = 121
(x^2 + 1/x^2) = √121
( x^2 + 1/x^2 ) = 11
( x )^2 + (1/x )^2 + 2(x)(1/ x) - 2(x)(1/x) = 11
( x - 1/x )^2 + 2 (x ) ( 1/ x ) = 11
( x - 1/x )^2 + 2 = 11
( x - 1/x )^2 = 11 - 2
( x - 1/x )^2 = 9
x - 1/x = √9
x - 1/x = 3
therefore , value of ( x - 1/ x ) = 3
Answer : 3
--------------------------------------------------------
Similar questions
English,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago