Math, asked by babitadk4, 7 months ago

solve this q
PLZZ do not scam urgent​

Attachments:

Answers

Answered by spiderman2019
0

Answer:

Step-by-step explanation:

A =    \left[\begin{array}{ccc}13& -11\\5&8\end{array}\right]      B =  \left[\begin{array}{ccc}1&3\\4&2\end{array}\right]    C = \left[\begin{array}{ccc}-2&1\\6&3\end{array}\right]

1) A - B + 2C =  

=       \left[\begin{array}{ccc}13& -11\\5&8\end{array}\right]      -    \left[\begin{array}{ccc}1&3\\4&2\end{array}\right]    + 2 \left[\begin{array}{ccc}-2&1\\6&3\end{array}\right]

=       \left[\begin{array}{ccc}13-1&-11 -3\\5-4&8-2\end{array}\right]     +  \left[\begin{array}{ccc}2* - 2 & 2 * 1\\2 * 6 &2 * 3\end{array}\right]

=        \left[\begin{array}{ccc}12&-14\\1&6\end{array}\right]    + \left[\begin{array}{ccc}-4&2\\12&6\end{array}\right]

=        \left[\begin{array}{ccc}12 - 4&-14 +2\\1 + 12&6 + 6\end{array}\right]

=        \left[\begin{array}{ccc}8&-12\\13&12\end{array}\right]

2) PT (A+B) + C = A + (B+C)

A + B =  \left[\begin{array}{ccc}13& -11\\5&8\end{array}\right]   +   \left[\begin{array}{ccc}1&3\\4&2\end{array}\right]  = \left[\begin{array}{ccc}13+1&-11+3\\5+4&8+2\end{array}\right]  =  \left[\begin{array}{ccc}14&-8\\9&10\end{array}\right]

(A + B) + C =   \left[\begin{array}{ccc}14&-8\\9&10\end{array}\right]  + \left[\begin{array}{ccc}-2&1\\6&3\end{array}\right] =      \left[\begin{array}{ccc}14-2&-8+1\\9+6&10+3\end{array}\right]  = \left[\begin{array}{ccc}12&-7\\15&13\end{array}\right]

B+C =   \left[\begin{array}{ccc}1&3\\4&2\end{array}\right]   +  \left[\begin{array}{ccc}-2&1\\6&3\end{array}\right]   = \left[\begin{array}{ccc}1-2&3+1\\4+6&2+3\end{array}\right]  = \left[\begin{array}{ccc}-1&4\\10&5\end{array}\right]

A + (B+C) =  \left[\begin{array}{ccc}13& -11\\5&8\end{array}\right]  +  \left[\begin{array}{ccc}-1&4\\10&5\end{array}\right] = \left[\begin{array}{ccc}13-1&-11+4\\5+10&8+5\end{array}\right] = \left[\begin{array}{ccc}12&-7\\15&13\end{array}\right] \left

=> (A+B) + C = A + (B+C)

Hence Proved.

Similar questions