Math, asked by cjffot, 11 months ago

solve this quadratic question in two methods.

 {x}^{2}  - 3x - 4

Answers

Answered by shivshankar233
3

Answer:

x²-4x+x-4

x(x-4)+1(x-4)

(x-4)(x+1)

Answered by BrainlyConqueror0901
148

Answer:

□ X=4 and -1✔✔

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\huge{\boxed{\sf{1ST\:METHOD-}}}

\huge{\boxed{\sf{MIDDLE\:TERM\:SPLITTING-}}}

 {x}^{2}  - 3x - 4 \\  {x}^{2}  - 4x + x - 4 \\ x(x - 4) + 1(x - 4) \\ (x + 1)(x  -  4) \\ x =  - 1 \: and \: 4 \\

\huge{\boxed{\sf{2nd\:METHOD-}}}

\huge{\boxed{\sf{QUADRATIC\:FORMULA-}}}

d =  {b}^{2}  - 4ac \\  \:  \:  \:  \:  =  {3}^{2}   + 16 \\  \:  \:  \:  \:  = 9 + 16 \\  \:  \:  \:  \: = 25 \\ again \\ x =  \frac{ - b  +  \sqrt{d} }{2a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - b -   \sqrt{d}  }{2a}  \\ x =   \frac{3 + 5}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{3 - 5}{2}  \\ x =  \frac{8}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 2}{2}  \\ x = 4 \: and \:  - 1

Similar questions