Math, asked by kyabhai634, 4 months ago

Solve this queation .​

Attachments:

Answers

Answered by Anonymous
8

Explanation :

ㅤㅤㅤㅤㅤ

\tt \bigstar   \green{lim_{ x \to3} \bigg( \cfrac{x {}^{2} - 5x + 6 }{x {}^{2}  - 9}  \bigg)} \\  \\  \\  \tt \underline{Apply \:  L-hospital \:  rule, } \\  \\  \\  \longrightarrow \tt \: lim_{ x \to3} \bigg( \cfrac{ \dfrac{d}{dx} (x {}^{2} - 5x + 6 )}{ \dfrac{d}{dx} (x {}^{2}  - 9)}  \bigg) \\  \\  \\  \longrightarrow \tt \: lim_{ x \to3} \bigg( \dfrac{2x - 5}{2x}   \bigg) \\  \\  \\  \longrightarrow \tt \bigg( \dfrac{2 \times 3 - 5}{2 \times 3}  \bigg) \\  \\  \\ \longrightarrow \tt \bigg( \dfrac{6 - 5}{6}  \bigg) \\  \\  \\ \longrightarrow \tt  \red{ \dfrac{1}{6} }

ㅤㅤㅤㅤㅤ

Hence :

ㅤㅤㅤㅤㅤ

\dag  \boxed{\tt  lim_{x \to3} \dfrac{x {}^{2} - 5x + 6 }{x {}^{2}  - 9}   =  \dfrac{1}{6} }

ㅤㅤㅤㅤㅤ

____________________

ㅤㅤㅤㅤㅤ

 \boxed{\begin{array}{|c|} \underline{ \tt \red{Some  \: important\:  limits, }}  \\ \\ \\   \bull  \tt lim_{x \to 0}(sinx) = 0  \\ \\  \\  \bull  \tt lim_{x \to 0}(cosx) = 1  \\  \\ \\   \bull  \tt lim_{x \to 0}  \dfrac{sinx}{x}   = 1 =  lim_{x \to0}  \dfrac{x}{sinx} \\  \\  \\  \bull  \tt lim_{x \to 0} \dfrac{tanx}{x}   = 1 =  lim_{x \to0  }  \dfrac{x}{tanx} \\  \\  \\  \bull  \tt lim_{x \to 0} \dfrac{log(1 + x)}{x}   = 1 \\  \\  \\ \bull  \tt lim_{x \to 0}e {}^{x}  = 1 \\  \\  \\ \bull  \tt lim_{x \to 0} \dfrac{e {}^{x} - 1 }{x}  = 1 \\  \\   \\  \bull  \tt lim_{x \to 0} \dfrac{a {}^{x}  - 1}{x} =  log_{e}(a)   \\  \\  \\  \bull  \tt lim_{x \to 0} \bigg(1 +  \dfrac{1}{x} \bigg) {}^{x}   = e \end{array}}

ㅤㅤㅤㅤㅤ

Answered by anshu24497
1

\begin{gathered} \large \mathfrak{\underline{\underline{ \green{Given :}}}}  \\ \\  \rm\ \blue{lim_{ x \to3} \bigg( \cfrac{x {}^{2} - 5x + 6 }{x {}^{2} - 9} \bigg)} \\ \\ \large \mathfrak{ \underline{ \underline{ \orange{Solution :}}}} \\ \\  \boxed{ \purple{We  \: have  \: to \:  apply \: L-hospital \: rule,} } \\ \\ \\ \implies\rm\:{ \color{navy}{ lim_{ x \to3} \bigg( \cfrac{ \dfrac{d}{dx} (x {}^{2} - 5x + 6 )}{ \dfrac{d}{dx} (x {}^{2} - 9)} \bigg) }}\\ \\ \\ \implies\rm \:{ \color{navy}{ lim_{ x \to3} \bigg( \dfrac{2x - 5}{2x} \bigg)}} \\ \\ \\ \implies \rm{ \color{navy}{ \bigg( \dfrac{2 \times 3 - 5}{2 \times 3} \bigg)}} \\ \\ \\ \implies \rm{ \color{navy}{ \bigg( \dfrac{6 - 5}{6} \bigg)}} \\ \\ \\ \implies \rm{\pink{{ \dfrac{1}{6} }}}\end{gathered}

 \boxed{ \red{\therefore \sf{ \:  \:  \: lim_{ x \to3}  \cfrac{x {}^{2} - 5x + 6 }{x {}^{2} - 9}   = \dfrac{1}{6} }}}

Similar questions