Math, asked by prashant247, 7 hours ago

solve this
...
.
ques
..
.
.​

Attachments:

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

Let us suppose

\sf{\beta=\dfrac{a^2}{cos^2(x)}+\dfrac{b^2}{sin^2(x)}}

\sf{\implies\beta=a^2\,sec^2(x)+b^2\,cosec^2(x)}

\sf{\implies\beta=a^2\left(1+tan^2(x)\right)+b^2\left(1+cot^2(x)\right)}

\sf{\implies\beta=a^2+a^2\,tan^2(x)+b^2+b^2\,cot^2(x)}

\sf{\implies\beta=a^2\,tan^2(x)+b^2\,cot^2(x)-2ab+a^2+b^2+2ab}

\sf{\implies\beta=a^2\,tan^2(x)+b^2\,cot^2(x)-2\cdot\,a\,tan(x)\cdot\,b\,cot(x)+\left(a+b\right)^2}

\sf{\implies\beta=\left\{a\,tan(x)-b\,cot(x)\right\}^2+\left(a+b\right)^2}

\sf{\implies\beta=\left\{a\,tan(x)-\dfrac{b}{tan(x)}\right\}^2+\left(a+b\right)^2}

Now,

We know,

\sf{\left\{a\,tan(x)-\dfrac{b}{tan(x)}\right\}^2\ge0}

\sf{\implies\left\{a\,tan(x)-\dfrac{b}{tan(x)}\right\}^2+\left(a+b\right)^2\ge0+\left(a+b\right)^2}

\sf{\implies\beta\ge\left(a+b\right)^2}

Hence, the minimum value of the given expression is (a+b)²

Answered by babuminz7069
1

hm gd kaal se m on nie aaungi..

Similar questions