solve this ques fast pls
I WILL MARK CORRECT ANS BRAINLIEST
SecA +TanA=x
find the value of SinA
Answers
Answered by
1
secA+tanA=x.........(1.) and we know that sec2A-tan2A=1 ON DIVIDING with given result with eqn.1secX-tanX=1/x(2.)
now solve eqn(1.)and(2.) by simple linear equation method to obtain required ratios.
now solve eqn(1.)and(2.) by simple linear equation method to obtain required ratios.
jvinayakg1014:
how we will get sinA
Answered by
9
Answer:
(x² + 1)/(x² - 1)
Step-by-step explanation:
Given, secA + tanA = x. ------------- (1)
We know that : (secA + tanA)(secA - tanA) = 1
⇒ (x)(secA - tanA) = 1
⇒ secA - tanA = (1/x) ----------------- (2)
On subtracting, we get
⇒ 2tanA = x - (1/x)
⇒ 2 tanA = (x² - 1)/x
⇒ tanA = (x² - 1)/2x
∴ cotA = 1/tanA
= (2x)/x² - 1
∴ cosec²A = 1 + cot²A
= 1 + [(2x/x²- 1)]²
= (x⁴ - 2x² + 1 + 4x²)/(x² - 1)²
= (x⁴ + 2x² + 1)/(x² - 1)²
= (x² + 1)²/(x² - 1)²
= (x² + 1)/(x² - 1).
∴ sinA = 1/cosecA
= (x² + 1)/(x² - 1).
Hope it helps!
Similar questions