Solve this ques of Jee mains
Chapter → Functions
Answers
EXPLANATION.
If f(x) + 2f(1/x) = 3x, x ≠ 0
⇒ S = {x ∈ R : f(x) = f(-x)} ; then S.
As we know that,
⇒ f(x) + 2f(1/x) = 3x. - - - - - (1).
Put the value of x = 1/x in the equation, we get.
⇒ f(1/x) + 2f(x) = 3(1/x).
⇒ 2f(x) + f(1/x) = 3(1/x). - - - - - (2).
From equation (1) & (2), we get.
Multiply equation (1) by 1, we get.
Multiply equation (2) by , we get.
⇒ f(x) + 2f(1/x) = 3x. - - - - - (1). x 1.
⇒ 2f(x) + f(1/x) = 3(1/x). - - - - - (2). x 2.
We get,
⇒ f(x) + 2f(1/x) = 3x. - - - - - (3).
⇒ 4f(x) + 2f(1/x) = 6/x. - - - - - (4).
Subtract equation (3) & (4), we get.
⇒ f(x) + 2f(1/x) = 3x. - - - - - (3).
⇒ 4f(x) + 2f(1/x) = 6/x. - - - - - (4).
⇒ - - -
⇒ - 3f(x) = 3x - 6/x.
⇒ 3f(x) = 6/x - 3x.
⇒ f(x) = 2/x - x.
⇒ f(x) = f(-x).
⇒ 2/x - x = - (2/x - x).
⇒ 2/x - x = - 2/x + x.
⇒ 2/x + 2/x = x + x.
⇒ 4/x = 2x.
⇒ 4 = 2x².
⇒ x² = 2.
⇒ x = ± √2.
S, contains exactly two elements.
Option [B] is correct answer.
Step-by-step explanation:
Given
:- f(x) + 2 f(1/x) = 3x , [ x≠0 ] ______(1)
Replacing , x as 1/x
We have. , f(1/x) + 2f(x) = 3/x
→ 2 f(x)+ f(1/x) = 3/x _______(ii)
On multipling Eq. (ii) by 2 and subtracting Eq. (i)
→ 4f(x) + 2f(1/x) - f(x) -2f(1/x) = 6/x - 3x
- → 3f(x) = 6/x - 3x
- → f(x) = 2/x - x
- Now, consider f(x) = f(-x)
- → 2/x - x = -2/x + x
- → 4/x = 2x
- → 2x² = 4
- → x² = 2
- → x = ±√2
∴ S contains exactly two elements .