Solve this ques of Jee mains
chapter → Functions
Answers
EXPLANATION.
Function f : R → [-1/2, 1/2] defined as f(x) = x/1 + x².
As we know that,
Let, us find f(1/x).
⇒ f(1/x) = (1/x)/1 + (1/x)².
⇒ f(1/x) = (1/x)/1 + 1/x².
⇒ f(1/x) = (1/x)/x² + 1/x².
⇒ f(1/x) = 1/(x) X (x²)/(x² + 1).
⇒ f(1/x) = (x)/(x² + 1).
⇒ f(1/x) = f(x).
If f(1/x) = f(x) then f(1/2) = f(2) & f(1/3) = f(3) & f(1/4) = f(x) . . . . . So on.
So, f(x) is a many-one functions.
⇒ f(x) = x/1 + x².
⇒ y = f(x) = x/1 + x².
⇒ y = x/1 + x².
⇒ y(1 + x²) = x.
⇒ y + x²y = x.
⇒ y + x²y - x = 0.
⇒ yx² - x + y = 0.
As we know that,
⇒ D ≥ 0.
⇒ b² - 4ac ≥ 0.
⇒ (-1)² - 4(y)(y) ≥ 0.
⇒ 1 - 4y² ≥ 0.
⇒ (1)² - (2y)² ≥ 0.
⇒ (1 - 2y)(1 + 2y) ≥ 0.
⇒ (2y - 1)(2y + 1) ≤ 0.
Zeroes are.
⇒ 2y - 1 = 0.
⇒ 2y = 1.
⇒ y = 1/2. - - - - - (1).
⇒ 2y + 1 = 0.
⇒ 2y = - 1.
⇒ y = - 1/2. - - - - - (2).
Put the value in the wavy curve method, we get.
⇒ y ∈ [-1/2, 1/2].
Range = Co-domain = [-1/2. 1/2].
So, f(x) is a surjective.
Hence, Option [D] is correct answer.
The function defined as is ____________.
- (a) neither injective not surjective.
- (b) invertible.
- (c) injective but not surjective.
- (d) surjective but not injective.
We know that,
Now let's derive f(x) for f(1/x)
In The Same Manner
.:.
Thus We Can Say, f(x) is many-one function.
Now, Again Let's y = f(x)
As, x is a Rational Number [x ∈ R]
- As, D ≥ 0 & b²-4ac ≥ 0
So,
Roots of the Equation are:-
→ 2y-1 = 0
→ 2y = 1
→ y = 1/2 ➝ ①
___________________
→ 1+2y = 0
→ 2y = -1
→ y = -1/2 ➝ ②
Such That,
.:. Range = Co-domain
- Thus, f(x) is surjective.
Hence,
- Option D.
Hope This Helps!!