Math, asked by MiniDoraemon, 6 hours ago

solve this ques of jee mains
chapter → vectors​

Attachments:

Answers

Answered by ridhya77677
4

Answer:

(b) -1 is the answer.

refer to attachment

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that the following vectors,

\rm :\longmapsto\:(1,a, {a}^{2}), \: (1,b, {b}^{2}), \: (1,c, {c}^{2}) \: are \: non \: coplanar

So, it implies,

\rm :\longmapsto\:\rm \:   \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}1&a& {a}^{2} \\1&b& {b}^{2} \\1&c& {c}^{2} \end{array}\right | \end{gathered} \:  \ne \: 0 -  -  - (1)

Now, given that

\rm :\longmapsto\:\begin{gathered}\sf \left | \begin{array}{ccc}a& {a}^{2} &1 +  {a}^{3} \\b& {b}^{2} &1 + {b}^{3} \\c& {c}^{2} &1 + {c}^{3} \end{array}\right | \end{gathered} = 0

Using splitting property of determinants, if any row or column is represented as a sum of two or more elements, then determinant can be expressed as a sum of two or more determinants.

So, we have now

\rm :\longmapsto\:\begin{gathered}\sf \left | \begin{array}{ccc}a& {a}^{2} &{a}^{3} \\b& {b}^{2} &{b}^{3} \\c& {c}^{2} &{c}^{3} \end{array}\right | \end{gathered} +\begin{gathered}\sf \left | \begin{array}{ccc}a& {a}^{2} &1 \\b& {b}^{2} &1 \\c& {c}^{2} &1  \end{array}\right | \end{gathered}  = 0

Now, take out a, b, c common from respective Rows, we get

\rm :\longmapsto\:abc\begin{gathered}\sf \left | \begin{array}{ccc}1&a& {a}^{2} \\1&b& {b}^{2} \\1&c& {c}^{2} \end{array}\right | \end{gathered} +\begin{gathered}\sf \left | \begin{array}{ccc}a& {a}^{2} &1 \\b& {b}^{2} &1 \\c& {c}^{2} &1  \end{array}\right | \end{gathered}  = 0

Now, we know, if successive rows or columns are interchanged, the determinant value is multiplied by - 1.

So, in second determinant, interchanged second column with third column, so we have

\rm :\longmapsto\:abc\begin{gathered}\sf \left | \begin{array}{ccc}1&a& {a}^{2} \\1&b& {b}^{2} \\1&c& {c}^{2} \end{array}\right | \end{gathered}  - \begin{gathered}\sf \left | \begin{array}{ccc}a&1 & {a}^{2}  \\b&1 & {b}^{2}  \\c&1 & {c}^{2}   \end{array}\right | \end{gathered}  = 0

Again, interchanged first column with second column, we get

\rm :\longmapsto\:abc\begin{gathered}\sf \left | \begin{array}{ccc}1&a& {a}^{2} \\1&b& {b}^{2} \\1&c& {c}^{2} \end{array}\right | \end{gathered} +  \begin{gathered}\sf \left | \begin{array}{ccc}1&a& {a}^{2} \\1&b& {b}^{2} \\1&c& {c}^{2} \end{array}\right | \end{gathered}  = 0

can be rewritten as after taking common,

\rm :\longmapsto\:\begin{gathered}\sf \left | \begin{array}{ccc}1&a& {a}^{2} \\1&b& {b}^{2} \\1&c& {c}^{2} \end{array}\right | \end{gathered}(1 + abc) = 0

Since, from equation (1) we have

\rm :\longmapsto\:\begin{gathered}\sf \left | \begin{array}{ccc}1&a& {a}^{2} \\1&b& {b}^{2} \\1&c& {c}^{2} \end{array}\right | \end{gathered} \:  \ne \: 0

\rm :\implies\:1 + abc = 0

\bf\implies \:abc  \: =  \:  -  \: 1

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: Option \: (b) \: is \: correct}}}

Additional Information :-

\underbrace{\boxed{ \tt{ [\vec{a} \:  \: \vec{b} \:  \: \vec{c}]\: =  \: \vec{a}. \: (\vec{b}  \times \vec{c})}}}

\underbrace{\boxed{ \tt{ [\vec{a} \:  \: \vec{a} \:  \: \vec{b}]\: =  0}}}

Similar questions