Math, asked by Anurag15683, 11 months ago

solve this question.​

Attachments:

Answers

Answered by ihrishi
1

Step-by-step explanation:

 \sqrt{ \frac{x}{y} }  +  \sqrt{ \frac{y}{x} }  =  \frac{10}{3}  \\ squiring \: both \: sides \:  \\  ({ \sqrt{ \frac{x}{y} }  +  \sqrt{ \frac{y}{x} })}^{2}  = ( { \frac{10}{3} })^{2}  \\  \frac{x}{y}  +  \frac{y}{x}  + 2 \times   \sqrt{ \frac{x}{y} }  \times  \sqrt{ \frac{y}{x} }   =  \frac{100}{9}  \\  \frac{x}{y}  +  \frac{y}{x}  + 2  =  \frac{100}{9}  \\  \frac{ {x}^{2} +  {y}^{2}  }{xy}  =  \frac{100}{9}  - 2 \\   \frac{ {x}^{2} +  {y}^{2}  }{xy}  =  \frac{100 - 18}{9}   \\ \\   \frac{ {x}^{2} +  {y}^{2}  }{xy}  =  \frac{82}{9}   \\ xy =  \frac{9}{82} ( {x}^{2}  +  {y}^{2} )

Mark as brainliest

Similar questions
Math, 11 months ago