Math, asked by kvstarun, 1 year ago

solve this question​

Attachments:

Answers

Answered by Anonymous
1

Answer

→x = cot 2x

Step - by - step explanation:-

</u><u>A</u><u>.</u><u>T</u><u>.</u><u>Q</u><u>.</u><u> \\  \\  {tan}^{ - 1}  \frac{1 - x}{1 + x}  =  \frac{1}{2}  {tan}^{ - 1} x \\  </u><u>\</u><u>\</u><u> </u><u> \because \:tan \:  \frac{ \pi}{4}  = 1 \\    </u><u>\</u><u>\</u><u> \: </u><u>H</u><u>ence </u><u>,</u><u>\\  \\  {tan}^{ - 1}  \frac{tan \frac{ \pi}{4}   - x}{1 + tan \frac{ \pi}{4}  \: x}  =  \frac{1}{2}  {tan}^{ - 1} x \\  \\  \because \: tan(a - b) =  \frac{tan \: a - tan \: b}{1 + tan \: a \: tn \: b}  \\  \\ </u><u>T</u><u>herefore </u><u>,</u><u>\\  \\  {tan}^{ - 1} tan( \frac{ \pi}{4}  - x) =  \frac{1}{2}  {tan}^{ - 1} x \\  \\  \frac{ \pi}{4}  - x =  \frac{1}{2}  {tan}^{ - 1}x  \\  \\  \frac{ \pi}{2}   - 2x =  {tan}^{ - 1} x \\  \\ \</u><u>t</u><u>herefore x = tan \:  \bigg( \frac{ \pi}{2}  - 2x \bigg) \\  \\ \implies \:  \boxed{ x = cot \: 2x} \\  \\  \because \: tan(90 \degree -  \theta) = cot \theta

Similar questions