Physics, asked by kaushik05, 10 months ago

solve this question ...​

Attachments:

Answers

Answered by AnandMPC
3

Hello Mate,

Here is your answer,

We Know,

 i_{e} =  i_{c}  +  i_{b} \\  \\  i_{c} =  \beta  i_{b} \\  \\  v_{cc} =  i_{c} r_{c} +  i_{e}  r_{e} +  v_{ce}  \\  \\ v_{cc} =  ri_{b} +  i_{e}  r_{e} +  v_{be} \\  \\ r +  \beta   r_{e} =  v_{cc} - v_{be}  \\  \\  i_{b} =  \frac{ v_{cc} -  v_{be} }{r +  \beta   r_{e}}   \\  \\ substituting \: values \: we \: get \\  \\  \frac{11.5}{200}  \: ma \\  \\   r_{c}   + r_{e} =  \frac{ v_{cc} -  v_{ce} }{  \beta i_{b} }  \\  \\ substituting \: values \: we \: get \\  \\  \frac{2}{11.5} (12 - 3)k\:  \: ohms \\  \\  = 1.56k \:  \: ohms \\  \\ r_{c}   + r_{e} = 1.56 \\  \\ r_{c}   = 1.56 - 1 \\  \\  = 0.56k \:  \: ohms

Hope it helps:)

Answered by Anonymous
0

Answer:

We Know,

\begin{lgathered}i_{e} = i_{c} + i_{b} \\ \\ i_{c} = \beta i_{b} \\ \\ v_{cc} = i_{c} r_{c} + i_{e} r_{e} + v_{ce} \\ \\ v_{cc} = ri_{b} + i_{e} r_{e} + v_{be} \\ \\ r + \beta r_{e} = v_{cc} - v_{be} \\ \\ i_{b} = \frac{ v_{cc} - v_{be} }{r + \beta r_{e}} \\ \\ substituting \: values \: we \: get \\ \\ \frac{11.5}{200} \: ma \\ \\ r_{c} + r_{e} = \frac{ v_{cc} - v_{ce} }{ \beta i_{b} } \\ \\ substituting \: values \: we \: get \\ \\ \frac{2}{11.5} (12 - 3)k\: \: ohms \\ \\ = 1.56k \: \: ohms \\ \\ r_{c} + r_{e} = 1.56 \\ \\ r_{c} = 1.56 - 1 \\ \\ = 0.56k \: \: ohms\end{lgathered}  \:

Similar questions