Math, asked by adarshkumarchauhan2, 9 months ago

Solve this question

Attachments:

Answers

Answered by Anonymous
12

Question :-

Prove that √[ (secθ - 1)/(secθ + 1) ] + √[ (secθ + 1)/(secθ - 1) ] = 2cosecθ

Solution :-

 \sf  \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} }  +  \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} }  = 2cosec \theta

Consider LHS

 \sf  \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} }  +  \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1} }

On rationalising each term we get,

 \sf  = \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} \times  \dfrac{sec \theta - 1}{sec \theta - 1}  }  +  \sqrt{ \dfrac{sec \theta + 1}{sec \theta - 1}  \times \dfrac{sec \theta  +  1}{sec \theta  + 1} }

 \sf  = \sqrt{ \dfrac{(sec \theta - 1)^{2} }{(sec \theta + 1)(sec \theta  - 1)} }+  \sqrt{ \dfrac{(sec \theta + 1)^{2} }{(sec \theta - 1)(sec \theta + 1)}}

 \sf  = \sqrt{ \dfrac{(sec \theta - 1)^{2} }{sec^{2}  \theta  - 1^{2} } }+  \sqrt{ \dfrac{(sec \theta + 1)^{2} }{sec^{2}  \theta - 1^{2} }}

[ Because (x + y)(x - y) = x² - y² ]

 \sf  = \sqrt{ \dfrac{(sec \theta - 1)^{2} }{sec^{2}  \theta  - 1 } }+  \sqrt{ \dfrac{(sec \theta + 1)^{2} }{sec^{2}  \theta - 1 }}

 \sf  = \sqrt{ \dfrac{(sec \theta - 1)^{2} }{tan^{2}  \theta}}+  \sqrt{ \dfrac{(sec \theta + 1)^{2} }{tan^{2}  \theta  }}

[ Because sec²θ - 1 = tan²θ ]

 \sf  = \sqrt{ \bigg( \dfrac{sec \theta - 1 }{tan \theta} \bigg)^{2} }+  \sqrt{ \bigg( \dfrac{sec \theta + 1 }{tan \theta} \bigg)^{2}   }

 \sf  =  \dfrac{sec \theta - 1 }{tan \theta} +   \dfrac{sec \theta + 1 }{tan \theta}

 \sf  =  \dfrac{sec \theta - 1  + (sec \theta + 1)}{tan \theta}

 \sf  =  \dfrac{sec \theta - 1  + sec \theta + 1}{tan \theta}

 \sf  =  \dfrac{2sec \theta }{tan \theta}

 \displaystyle{ \sf  = 2 \times  \frac{ \dfrac{1}{cos \theta}  }{ \dfrac{sin \theta}{cos \theta} } }

[ Because secθ = 1/cosθ and tanθ = sinθ/cosθ ]

 \sf  = 2 \times \dfrac{1}{ \cancel{cos \theta}} \times  \dfrac{ \cancel{cos \theta}}{sin \theta}

 \sf  = 2 \times  \dfrac{1}{sin \theta}

 \sf  = 2 \times cosec \theta

[ Because 1/sinθ = cosecθ ]

 \sf  = 2cosec \theta

 \sf = RHS

LHS = RHS

Hence proved

Answered by Sharad001
81

Question :-

Prove that ,

  \footnotesize{ \red{ \sf{ \sqrt{ \frac{ \sec( \theta) - 1 }{ \sec( \theta)  + 1} } }  +  \green{ \sqrt{ \frac{ \sec( \theta) + 1 }{ \sec( \theta)  - 1} } } = 2 \csc( \theta) }} \\  \\

Formula used :-

  \star \boxed{ \red{ \sf{{ \sec }^{2}  \theta}  -  { \tan( \theta) }^{2}  = 1} }\\  \\   \star \boxed{  \green{\tan( \theta)  =  \frac{ \sin( \theta) }{ \cos( \theta) }} } \\  \\  \star \boxed{  \pink{\sec( \theta)  =  \frac{1}{ \cos( \theta) }} }

________________________________

Proof :-

We have to prove Left hand side equal to Right hand side ,

Taking LHS ( left hand side)

{  \green{\sf{ \sqrt{ \frac{ \sec( \theta) - 1 }{ \sec( \theta)  + 1} } }  +  \red{ \sqrt{ \frac{ \sec( \theta) + 1 }{ \sec( \theta)  - 1} } }}} \:  \\  \\  \sf{we \: can \: write \: it \: } \\  \\ \sf{  \frac{ \sqrt{ \sec( \theta) - 1 } }{  \sqrt{  \red{\sec( \theta)  + 1}} }  +  \frac{ \sqrt{  \green{\sec( \theta) + 1} } }{ \sqrt{ \sec( \theta) - 1 } } } \\  \\   \frac{  \big({ \sqrt{  \red{ \sec( \theta)  - 1}}  \big)}^{2} +  {  \big(\sqrt{  \green{\sec( \theta) + 1 }}  \big)}^{2}  }{ \sqrt{  \pink{{ \sec }^{2}  \theta - 1}} }  \\  \\  \rightarrow \frac{  \red{\sec( \theta) - 1 +  \sec( \theta)  + 1 }}{ \sqrt{ \green{  { \tan}^{2}  \theta}} }  \\  \\   \rightarrow \: \frac{2 \red{ \sec( \theta) }}{  \green{\tan( \theta)} }  \\  \\  \rightarrow \:  \frac{ \frac{ \red{2}}{ \green{ \cos( \theta)} } }{ \frac{ \red{ \sin( \theta) }}{ \green{ \cos( \theta) }} }  \\  \\  \rightarrow \:  \frac{2}{  \red{\sin( \theta)} }  \\  \\  \rightarrow \: 2 \csc( \theta)

•.• LHS = RHS

hence proved .

_______________________________

Similar questions