Math, asked by playboy12, 1 year ago

solve this question​

Attachments:

Answers

Answered by sahil48121
0

Answer:

Rationalisation

Step-by-step explanation:

First Rationalise it then use trigonometry equation.

Answered by ihrishi
0

Step-by-step explanation:

 \sqrt{ \frac{1 -cos \: A}{1  + cos \: A} }  + cot\: A = cosec\: A \\ \\ LHS =  \sqrt{ \frac{1 -cos \: A}{1  + cos \: A} }  + cot\: A \\\\  =  \sqrt{ \frac{1 -cos \: A}{1  + cos \: A} }  \times  \sqrt{ \frac{1 -cos \: A}{1 -cos \: A} } + cot\: A\\(Multiplying \:Numerator \: \&\: Denominator\:\\by \:\sqrt{1 -cos \: A}) \\  \\= \sqrt{ \frac{(1 -cos \: A)^{2} }{1 ^{2}    - cos^{2}  \: A} } + cot\: A \\ \\= \sqrt{ \frac{(1 -cos \: A)^{2} }{1  - cos^{2}  \: A} } + cot\: A \\\\ = \sqrt{ \frac{(1 -cos \: A)^{2} }{sin^{2}  \: A} } +  cot\: A \\  \\= { \frac{(1 -cos \: A)}{sin \: A} } +  cot\: A\\ \\  =  \frac{1}{sin \: A}   -  \frac{cos \: A}{sin \: A} +  cot\: A  \\\\  = cosec \: A - cot\: A + cot\: A \\\\  = cosec \: A \\  \\= RHS \\ \\Hence \: Proved.

Similar questions