Math, asked by chandrashekar2822, 11 months ago

solve this question​

Attachments:

Answers

Answered by Anonymous
51

17) The perimeter of a right triangle is 60 m. Its hypotenuse is 25 m. Find the area of the triangle.

Solution :

Length of the hypotenuse of the triangle = 25 m

Let the lengths of other base and height be x, y respectively.

Perimeter of the triangle = 60 m

⇒ Sum of length of all sides = 60

⇒ x + y + 25 = 60

⇒ x + y = 60 - 25

⇒ x + y = 35

⇒ y = 35 - x

By pythagoras theorem

⇒ (Base)² + (Height)² = (Hypotenuse)²

⇒ x² + y² = 25²

⇒ x² + (35 - x)² = 625

⇒ x² + 35² - 2(35)(x) + x² = 625

⇒ 2x² + 1225 - 70x = 625

⇒ 2x² - 70x + 1225 - 625 = 0

⇒ 2x² - 70x + 600 = 0

⇒ 2(x² - 35x + 300) = 0

⇒ x² - 35x + 300 = 0

⇒ x² - 15x - 20x + 300 = 0

⇒ x(x - 15) - 20(x - 15) = 0

⇒ (x - 20)(x - 15) = 0

⇒ x - 20 = 0 or x - 15 = 0

⇒ x = 20 or x = 15

i.e Base = x = 20 or 15 cm

⇒ Height y = (35 - x) = 15 or 20 cm

Area of the triangle = 1/2 * Base * Height

= 1/2 * 20 * 15

= 300/2 = 150 cm²

Hence area of the triangle is 150 cm²

18) Half of the perimeter of the rectangular garden is 36 m. If the length is 4m more than its width. Find the dimensions of the garden.

Solution :

Let the width of the garden be x m

Length of the garden = (x + 4) m

Half the perimeter = 36 m

⇒ 1/2 [ 2(Length + Breadth) ] = 36 m

⇒ Length + Breadth = 36

⇒ x + 4 + x = 36

⇒ 2x + 4 = 36

⇒ 2x = 32

⇒ x = 16

Breadth = x = 16 m

Length = x + 4 = 16 + 4 = 20 m

Hence, 20 m and 16 m are the dimensions of rectangle.

19) The denominator if the fraction is 1 more than the twice the numerator. If the sum of the fraction and reciprocal is 2 16/21, find the fraction.

Solution :

Let the numerator of the fraction be x

Denominator = 2x + 1

Fraction = x/(2x + 1)

Reciprocal of the fraction = (2x + 1)/x

Sum of fraction and its reciprocal = 2 16/21 = 58/21

⇒ x/(2x + 1) + (2x + 1)/x = 58/21

Taking LCM

⇒ [ x(x) + (2x + 1)² ] / [ (2x + 1)x ] = 58/21

⇒ ( x² + 4x² + 4x + 1 ) / (2x² + x) = 58/21

⇒ ( 5x² + 4x + 1 ) / (2x² + x) = 58/21

⇒ 21(5x² + 4x + 1) = 58(2x² + x)

⇒ 105x² + 84x + 21 = 116x² + 58x

⇒ 0 = 116x² - 105x² + 58x - 84x - 21

⇒ 11x² - 26x - 21 = 0

⇒ 11x² - 33x + 7x - 21 = 0

⇒ 11x(x - 3) + 7(x - 3) = 0

⇒ (11x + 7)(x - 3) = 0

⇒ 11x + 7 = 0 or x - 3 = 0

⇒ x = - 7/11 or x = 3

[ Neglecting - 7/11 ]

⇒ x = 3

Fraction = x/(2x + 1) = 3 / [ 2(3) + 1] = 3/7

Hence, 3/7 is the required fraction.

20) For what value of k of QE has real and real roots : (k + 1)x² - 2(3k + 1)x + 8k + 1 = 0

Solution :

(k + 1)x² - 2(3k + 1)x + 8k + 1 = 0

For QE to have real and equal roots b² - 4ac = 0

Comparing with ax² + bx + c = 0 we get,

  • a = k + 1
  • b = - 2(3k + 1)
  • c = 8k + 1

b² - 4ac = 0

⇒ [ - 2(3k + 1) ]² - 4(k + 1)(8k + 1) = 0

⇒ [2(3k + 1)]² - 4[ k(8k + 1) + 1(8k + 1) ] = 0

⇒ (6k + 2)² - 4( 8k² + k + 8k + 1 )= 0

⇒ (6k)² + 2(6k)(2) + 2² - 32k² - 36k - 4 = 0

⇒ 36k² + 24k + 4 - 32k² - 36k - 4 = 0

⇒ 4k² - 12k = 0

⇒ 4k(k - 3) = 0

⇒ k - 3 = 0

⇒ k = 3

Hence the value of k is 3.

21) For what value of k of QE has real and distinct roots : kx² + 6x + 1 = 0

For QE to have real and distinct roots b² - 4ac > 0

Comparing with ax² + bx + c = 0 we get,

  • a = k
  • b = 6
  • c = 1

b² - 4ac > 0

⇒ 6² - 4(k)(1) > 0

⇒ 36 - 4k > 0

⇒ 36 > 4k

⇒ 36/4 > k

⇒ 9 > k

⇒ k < 9

Hence, any value of k is such that k is lesser than 9.

22) If the roots of the equation (b - c)x² + (c - a)x + (a - b) = 0 are equal, then prove that 2b = a + c

(b - c)x² + (c - a)x + (a - b) = 0

For QE to have equal roots b² - 4ac = 0

Comparing with ax² + bx + c = 0 we get,

  • a = (b - c)
  • b = (c - a)
  • c = (a - b)

b² - 4ac = 0

⇒ (c - a)² - 4(b - c)(a - b) = 0

⇒ c² + a² - 2ac - 4[ b(a - b) - c(a - b) ] = 0

⇒ c² + a² - 2ac - 4(ab - b² - ac + bc) = 0

⇒ c² + a² - 2ac - 4ab + 4b² + 4ac - 4bc = 0

⇒ c² + a² + 2ac - 4ab + 4b² - 4bc = 0

⇒ (a + c)² + 4b² - 4ab - 4bc = 0

⇒ (a + c)² + (2b)² - 4b(a + c) = 0

⇒ (a + c)² + (2b)² - 2(2b)(a + c) = 0

⇒ [ (a + c) - (2b) ]² = 0

⇒ a + c - 2b = 0

⇒ a + c = 2b

⇒ 2b = a + c

Hence proved.


Anonymous: Awesome!!!
Equestriadash: Perfect!! ♥♥
BrainlyConqueror0901: excellent work : )
ShivamKashyap08: Awesome as always!! ^_^
Similar questions