Math, asked by palakharsh04, 11 months ago

solve this question ​

Attachments:

Answers

Answered by Anonymous
6

\bf{\Huge{\boxed{\tt{\purple{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

\sf{\large{\sqrt{\frac{sec\theta-1}{sec\theta+1} } +\sqrt{\frac{sec\thtea+1}{sec\theta-1} } \:=\:2cosec\theta}}}

\bf{\Large{\underline{\rm{\red{Proof\::}}}}}

\hookrightarrow\sf{\underline{\bigstar{Take\:L.H.S.}}}

\hookrightarrow\sf{\large{\sqrt{\frac{sec\theta-1}{sec\theta+1} } +\sqrt{\frac{sec\thtea+1}{sec\theta-1} }}}

\hookrightarrow\sf{\large{\frac{(\sqrt{(sec\theta-1)^{2}  }+\sqrt{(sec\theta+1)^{2} } }{\sqrt{sec\theta+1} \sqrt{sec\theta-1}}}}

\hookrightarrow\sf{\large{\frac{sec\theta-1+sec\theta+1}{\sqrt{(sec^{2} \theta-1)} } }}

\hookrightarrow\sf{\large{\frac{sec\theta\cancel{-1}+sec\theta\cancel{+1}}{\sqrt{(sec^{2} \theta-1)} } }}

\hookrightarrow{\sf{\large{\frac{2sec\theta}{tan\theta} }}}

\hookrightarrow\sf{\large{\frac{2*\cancel{cos\theta}}{\cancel{cos\theta}*sin\theta} }}

\hookrightarrow\sf{\large{\frac{2}{sin\theta} }}}

\hookrightarrow\sf{\large{\boxed{\pink{2\:cosec\theta}}}}

Hence,

Proved.

Similar questions