Math, asked by palirana95, 10 months ago

solve this question​

Attachments:

Answers

Answered by abhi569
6

Answer:

Option b.

Step-by-step explanation:

 \implies \dfrac{ {2}^{ - 10 } +  {2}^{-11} +   {2}^{ - 12}   +  {2}^{ - 13}}{3} \\  \\  \\  \implies \dfrac{ {2}^{ - 13 + 3}  +  {2}^{ - 13 + 2}  +  {2}^{ - 13 + 1}  +  {2}^{ - 13} }{3} \\  \\  \\  \implies \dfrac{ {2}^{ - 13}( {2}^{3} )  +  {2}^{ - 13}( {2}^{2} )  + {2}^{ - 13}( {2}^{1} )  + 1 }{3} \\  \\  \\  \implies \dfrac{ {2}^{ - 13} ( {2}^{3}  +  {2}^{2}  +  {2}^{1}  + 1)}{3} \\  \\  \\  \implies \dfrac{ {2}^{ - 13}(8 + 4 + 2 + 1)}{3} \\  \\  \\  \implies \dfrac{ {2}^{ - 13}(15)}{3}

\implies 2^{-13} x 5.

Therefore,

Therefore the value of \dfrac{ {2}^{ - 10 } +  {2}^{11} +   {2}^{ - 12}   +  {2}^{ - 13}}{3} is 5 times the value of 2^(-13).

Similar questions