Math, asked by aditrajhow2004, 9 months ago

Solve this question​

Attachments:

Answers

Answered by rishu6845
0

Answer:

\boxed{\huge{(3) \:  \:  \: 4\:\:\:}}

Step-by-step explanation:

\bold{To \: find}\longrightarrow   \\ value \: of \: \\  \dfrac{1}{sin {10}^{0} }  -  \dfrac{ \sqrt{3} }{cos {10}^{0} }

\bold{Concept \: used}\longrightarrow \\ \boxed{sin( \alpha  -  \beta ) = sin \alpha  \: cos \beta  \:  - cos \alpha  \: sin \beta}  \\\boxed{ 2 \: sin \alpha  \: cos \alpha  = sin2 \alpha}

\bold{Solution}\longrightarrow \\  \dfrac{1}{sin10 ^{0} } -  \dfrac{ \sqrt{3} }{cos10 ^{0} }

 =  \dfrac{cos {10}^{0}  -  \sqrt{3} sin {10}^{0} }{sin {10}^{0}  \:  \: cos {10}^{0} }

 dividing \: and \: multipying \: by \: 2 \: in \: numerator \\  =  \dfrac{2 \: ( \dfrac{1}{2} cos {10}^{0}  -  \dfrac{ \sqrt{3} }{2}  \: sin {10}^{0} )}{sin {10}^{0}  \:  \: cos {10}^{0} }

 =  \dfrac{2 \times 2(sin {30}^{0} \: cos {10}^{0}   - cos {30}^{0} \: sin {10}^{0} ) }{2 \: sin {10}^{0}  \: cos {10}^{0} }

 =  \dfrac{4 \:  \: sin( {30}^{0} -  {10}^{0}  )}{sin2 \: ( {10}^{0}) }

 =  \dfrac{4 \:  \: sin {20}^{0} }{sin {20}^{0} }

sin {20}^{0}  \: is \: cancel \: out \: from \: numerator \: and \: denominator

 = 4

Similar questions