Math, asked by thakursavita441, 11 months ago

solve this question ​

Attachments:

Answers

Answered by jon1711
3

Answer:

here is your answer I think from here on you can solve now ....

Attachments:
Answered by Cynefin
7

 \large{ \bold{ \red{ \underline{ \underline{Question...}}}}}

 \large{ \sf{rationalize \:  \frac{ \sqrt{3 } + 1 }{2 \sqrt{2} -  \sqrt{3}  }}}

 \large{ \green{  \bold{ \underline{ \underline{Answer...}}}}}

 \large{ \sf{ =  \frac{2 \sqrt{6}  + 3 + 2 \sqrt{2} +  \sqrt{3}  }{5} }}

 \large{ \bold{ \red{ \underline{ \underline{Solution...}}}}}

  \large{ \sf{ \to \:  \frac{ \sqrt{3}  + 1}{2 \sqrt{2} -  \sqrt{3}  } }} \\  \\  \large{ \sf{ \to \:  \frac{ (\sqrt{3}  + 1)(2 \sqrt{2}  +  \sqrt{3}) }{(2 \sqrt{2} -  \sqrt{3} )(2 \sqrt{2} +  \sqrt{3})   } }} \\  \\  \large{ \sf{  \to \: \frac{2 \sqrt{6}  + 3 + 2 \sqrt{2 }  +  \sqrt{3}  }{(2 \sqrt{2}) {}^{2} - ( \sqrt{3}) {}^{2}    } }} \\  \red{ \large{ \sf{by \: using \: (x  - y)(x + y) =  {x}^{2}  -  {y}^{2} in denominator}}} \\  \\  \large{ \sf{ \to \:  \frac{ 2 \sqrt{6} + 3 + 2 \sqrt{2} +  \sqrt{3}   }{8 - 3} }} \\  \\  \large{ \sf{ \boxed{ \green{  \to \: \frac{2 \sqrt{6}  + 3 + 2 \sqrt{2} +  \sqrt{3}  }{5} }}}}

 \large{ \bold{ \pink{ required \: answer \: is =  \frac{2 \sqrt{6} + 3 + 2 \sqrt{2} +  \sqrt{3}   }{5} }}}

Similar questions